ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12i GIF version

Theorem preq12i 3748
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypotheses
Ref Expression
preq1i.1 𝐴 = 𝐵
preq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
preq12i {𝐴, 𝐶} = {𝐵, 𝐷}

Proof of Theorem preq12i
StepHypRef Expression
1 preq1i.1 . 2 𝐴 = 𝐵
2 preq12i.2 . 2 𝐶 = 𝐷
3 preq12 3745 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷})
41, 2, 3mp2an 426 1 {𝐴, 𝐶} = {𝐵, 𝐷}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  lgsdir2lem5  15705
  Copyright terms: Public domain W3C validator