ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12 Unicode version

Theorem preq12 3568
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Assertion
Ref Expression
preq12  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )

Proof of Theorem preq12
StepHypRef Expression
1 preq1 3566 . 2  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
2 preq2 3567 . 2  |-  ( B  =  D  ->  { C ,  B }  =  { C ,  D }
)
31, 2sylan9eq 2167 1  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314   {cpr 3494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-sn 3499  df-pr 3500
This theorem is referenced by:  preq12i  3571  preq12d  3574  preq12b  3663  opthreg  4431  relop  4649  qtopbasss  12510
  Copyright terms: Public domain W3C validator