ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq2i Unicode version

Theorem preq2i 3699
Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypothesis
Ref Expression
preq1i.1  |-  A  =  B
Assertion
Ref Expression
preq2i  |-  { C ,  A }  =  { C ,  B }

Proof of Theorem preq2i
StepHypRef Expression
1 preq1i.1 . 2  |-  A  =  B
2 preq2 3696 . 2  |-  ( A  =  B  ->  { C ,  A }  =  { C ,  B }
)
31, 2ax-mp 5 1  |-  { C ,  A }  =  { C ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  opid  3822  funopg  5288  df2o2  6484  fzprval  10148  fz0to3un2pr  10189  fz0to4untppr  10190  fzo0to2pr  10285  fzo0to42pr  10287  2strstr1g  12739
  Copyright terms: Public domain W3C validator