Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq2i Unicode version

Theorem preq2i 3614
 Description: Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
Hypothesis
Ref Expression
preq1i.1
Assertion
Ref Expression
preq2i

Proof of Theorem preq2i
StepHypRef Expression
1 preq1i.1 . 2
2 preq2 3611 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wceq 1332  cpr 3535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2123 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1738  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-v 2693  df-un 3082  df-sn 3540  df-pr 3541 This theorem is referenced by:  opid  3733  funopg  5169  df2o2  6340  fzprval  9922  fzo0to2pr  10055  fzo0to42pr  10057  2strstr1g  12137
 Copyright terms: Public domain W3C validator