| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > raaanlem | Unicode version | ||
| Description: Special case of raaan 3556 where  | 
| Ref | Expression | 
|---|---|
| raaan.1 | 
 | 
| raaan.2 | 
 | 
| Ref | Expression | 
|---|---|
| raaanlem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2259 | 
. . . 4
 | |
| 2 | 1 | cbvexv 1933 | 
. . 3
 | 
| 3 | raaan.1 | 
. . . . 5
 | |
| 4 | 3 | r19.28m 3540 | 
. . . 4
 | 
| 5 | 4 | ralbidv 2497 | 
. . 3
 | 
| 6 | 2, 5 | sylbi 121 | 
. 2
 | 
| 7 | nfcv 2339 | 
. . . 4
 | |
| 8 | raaan.2 | 
. . . 4
 | |
| 9 | 7, 8 | nfralxy 2535 | 
. . 3
 | 
| 10 | 9 | r19.27m 3546 | 
. 2
 | 
| 11 | 6, 10 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: raaan 3556 | 
| Copyright terms: Public domain | W3C validator |