| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raaanlem | Unicode version | ||
| Description: Special case of raaan 3556 where |
| Ref | Expression |
|---|---|
| raaan.1 |
|
| raaan.2 |
|
| Ref | Expression |
|---|---|
| raaanlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. . . 4
| |
| 2 | 1 | cbvexv 1933 |
. . 3
|
| 3 | raaan.1 |
. . . . 5
| |
| 4 | 3 | r19.28m 3540 |
. . . 4
|
| 5 | 4 | ralbidv 2497 |
. . 3
|
| 6 | 2, 5 | sylbi 121 |
. 2
|
| 7 | nfcv 2339 |
. . . 4
| |
| 8 | raaan.2 |
. . . 4
| |
| 9 | 7, 8 | nfralxy 2535 |
. . 3
|
| 10 | 9 | r19.27m 3546 |
. 2
|
| 11 | 6, 10 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: raaan 3556 |
| Copyright terms: Public domain | W3C validator |