ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28m Unicode version

Theorem r19.28m 3514
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Hypothesis
Ref Expression
r19.28m.1  |-  F/ x ph
Assertion
Ref Expression
r19.28m  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\  A. x  e.  A  ps ) ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem r19.28m
StepHypRef Expression
1 r19.26 2603 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
2 r19.28m.1 . . . 4  |-  F/ x ph
32r19.3rm 3513 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
43anbi1d 465 . 2  |-  ( E. x  x  e.  A  ->  ( ( ph  /\  A. x  e.  A  ps ) 
<->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
51, 4bitr4id 199 1  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\  A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1460   E.wex 1492    e. wcel 2148   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-cleq 2170  df-clel 2173  df-ral 2460
This theorem is referenced by:  r19.28mv  3517  raaanlem  3530
  Copyright terms: Public domain W3C validator