ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaanlem GIF version

Theorem raaanlem 3573
Description: Special case of raaan 3574 where 𝐴 is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Hypotheses
Ref Expression
raaan.1 𝑦𝜑
raaan.2 𝑥𝜓
Assertion
Ref Expression
raaanlem (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaanlem
StepHypRef Expression
1 eleq1 2270 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21cbvexv 1943 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
3 raaan.1 . . . . 5 𝑦𝜑
43r19.28m 3558 . . . 4 (∃𝑦 𝑦𝐴 → (∀𝑦𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐴 𝜓)))
54ralbidv 2508 . . 3 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
62, 5sylbi 121 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
7 nfcv 2350 . . . 4 𝑥𝐴
8 raaan.2 . . . 4 𝑥𝜓
97, 8nfralxy 2546 . . 3 𝑥𝑦𝐴 𝜓
109r19.27m 3564 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
116, 10bitrd 188 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1484  wex 1516  wcel 2178  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  raaan  3574
  Copyright terms: Public domain W3C validator