| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raaanlem | GIF version | ||
| Description: Special case of raaan 3566 where 𝐴 is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.) |
| Ref | Expression |
|---|---|
| raaan.1 | ⊢ Ⅎ𝑦𝜑 |
| raaan.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| raaanlem | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | 1 | cbvexv 1942 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
| 3 | raaan.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | r19.28m 3550 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 5 | 4 | ralbidv 2506 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 6 | 2, 5 | sylbi 121 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 7 | nfcv 2348 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 8 | raaan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 9 | 7, 8 | nfralxy 2544 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓 |
| 10 | 9 | r19.27m 3556 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 11 | 6, 10 | bitrd 188 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1483 ∃wex 1515 ∈ wcel 2176 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: raaan 3566 |
| Copyright terms: Public domain | W3C validator |