ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaanlem GIF version

Theorem raaanlem 3530
Description: Special case of raaan 3531 where 𝐴 is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Hypotheses
Ref Expression
raaan.1 𝑦𝜑
raaan.2 𝑥𝜓
Assertion
Ref Expression
raaanlem (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaanlem
StepHypRef Expression
1 eleq1 2240 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21cbvexv 1918 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
3 raaan.1 . . . . 5 𝑦𝜑
43r19.28m 3514 . . . 4 (∃𝑦 𝑦𝐴 → (∀𝑦𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐴 𝜓)))
54ralbidv 2477 . . 3 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
62, 5sylbi 121 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
7 nfcv 2319 . . . 4 𝑥𝐴
8 raaan.2 . . . 4 𝑥𝜓
97, 8nfralxy 2515 . . 3 𝑥𝑦𝐴 𝜓
109r19.27m 3520 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
116, 10bitrd 188 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1460  wex 1492  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460
This theorem is referenced by:  raaan  3531
  Copyright terms: Public domain W3C validator