ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaanlem GIF version

Theorem raaanlem 3514
Description: Special case of raaan 3515 where 𝐴 is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Hypotheses
Ref Expression
raaan.1 𝑦𝜑
raaan.2 𝑥𝜓
Assertion
Ref Expression
raaanlem (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem raaanlem
StepHypRef Expression
1 eleq1 2229 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21cbvexv 1906 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
3 raaan.1 . . . . 5 𝑦𝜑
43r19.28m 3498 . . . 4 (∃𝑦 𝑦𝐴 → (∀𝑦𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐴 𝜓)))
54ralbidv 2466 . . 3 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
62, 5sylbi 120 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
7 nfcv 2308 . . . 4 𝑥𝐴
8 raaan.2 . . . 4 𝑥𝜓
97, 8nfralxy 2504 . . 3 𝑥𝑦𝐴 𝜓
109r19.27m 3504 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
116, 10bitrd 187 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wnf 1448  wex 1480  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  raaan  3515
  Copyright terms: Public domain W3C validator