| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raaanlem | GIF version | ||
| Description: Special case of raaan 3597 where 𝐴 is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.) |
| Ref | Expression |
|---|---|
| raaan.1 | ⊢ Ⅎ𝑦𝜑 |
| raaan.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| raaanlem | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | 1 | cbvexv 1965 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
| 3 | raaan.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | r19.28m 3581 | . . . 4 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 5 | 4 | ralbidv 2530 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 6 | 2, 5 | sylbi 121 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 7 | nfcv 2372 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 8 | raaan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 9 | 7, 8 | nfralxy 2568 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓 |
| 10 | 9 | r19.27m 3587 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| 11 | 6, 10 | bitrd 188 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1506 ∃wex 1538 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: raaan 3597 |
| Copyright terms: Public domain | W3C validator |