| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfralxy | Unicode version | ||
| Description: Old name for nfralw 2534. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfralxy.1 | 
 | 
| nfralxy.2 | 
 | 
| Ref | Expression | 
|---|---|
| nfralxy | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nftru 1480 | 
. . 3
 | |
| 2 | nfralxy.1 | 
. . . 4
 | |
| 3 | 2 | a1i 9 | 
. . 3
 | 
| 4 | nfralxy.2 | 
. . . 4
 | |
| 5 | 4 | a1i 9 | 
. . 3
 | 
| 6 | 1, 3, 5 | nfraldxy 2530 | 
. 2
 | 
| 7 | 6 | mptru 1373 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: nfra2xy 2539 rspc2 2879 sbcralt 3066 sbcralg 3068 raaanlem 3555 nfint 3884 nfiinxy 3943 nfpo 4336 nfso 4337 nfse 4376 nffrfor 4383 nfwe 4390 ralxpf 4812 funimaexglem 5341 fun11iun 5525 dff13f 5817 nfiso 5853 mpoeq123 5981 nfofr 6142 fmpox 6258 nfrecs 6365 xpf1o 6905 ac6sfi 6959 ismkvnex 7221 lble 8974 fzrevral 10180 nfsum1 11521 nfsum 11522 fsum2dlemstep 11599 fisumcom2 11603 nfcprod1 11719 nfcprod 11720 bezoutlemmain 12165 cnmpt21 14527 setindis 15613 bdsetindis 15615 strcollnfALT 15632 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |