Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfralxy | Unicode version |
Description: Old name for nfralw 2512. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfralxy.1 | |
nfralxy.2 |
Ref | Expression |
---|---|
nfralxy |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1464 | . . 3 | |
2 | nfralxy.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | nfralxy.2 | . . . 4 | |
5 | 4 | a1i 9 | . . 3 |
6 | 1, 3, 5 | nfraldxy 2508 | . 2 |
7 | 6 | mptru 1362 | 1 |
Colors of variables: wff set class |
Syntax hints: wtru 1354 wnf 1458 wnfc 2304 wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 ax-17 1524 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 |
This theorem is referenced by: nfra2xy 2517 rspc2 2850 sbcralt 3037 sbcralg 3039 raaanlem 3526 nfint 3850 nfiinxy 3909 nfpo 4295 nfso 4296 nfse 4335 nffrfor 4342 nfwe 4349 ralxpf 4766 funimaexglem 5291 fun11iun 5474 dff13f 5761 nfiso 5797 mpoeq123 5924 nfofr 6079 fmpox 6191 nfrecs 6298 xpf1o 6834 ac6sfi 6888 ismkvnex 7143 lble 8875 fzrevral 10073 nfsum1 11330 nfsum 11331 fsum2dlemstep 11408 fisumcom2 11412 nfcprod1 11528 nfcprod 11529 bezoutlemmain 11964 cnmpt21 13342 setindis 14259 bdsetindis 14261 strcollnfALT 14278 isomninnlem 14319 iswomninnlem 14338 ismkvnnlem 14341 |
Copyright terms: Public domain | W3C validator |