ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralxy Unicode version

Theorem nfralxy 2532
Description: Old name for nfralw 2531. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfralxy.1  |-  F/_ x A
nfralxy.2  |-  F/ x ph
Assertion
Ref Expression
nfralxy  |-  F/ x A. y  e.  A  ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfralxy
StepHypRef Expression
1 nftru 1477 . . 3  |-  F/ y T.
2 nfralxy.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralxy.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfraldxy 2527 . 2  |-  ( T. 
->  F/ x A. y  e.  A  ph )
76mptru 1373 1  |-  F/ x A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1365   F/wnf 1471   F/_wnfc 2323   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477
This theorem is referenced by:  nfra2xy  2536  rspc2  2875  sbcralt  3062  sbcralg  3064  raaanlem  3551  nfint  3880  nfiinxy  3939  nfpo  4332  nfso  4333  nfse  4372  nffrfor  4379  nfwe  4386  ralxpf  4808  funimaexglem  5337  fun11iun  5521  dff13f  5813  nfiso  5849  mpoeq123  5977  nfofr  6137  fmpox  6253  nfrecs  6360  xpf1o  6900  ac6sfi  6954  ismkvnex  7214  lble  8966  fzrevral  10171  nfsum1  11499  nfsum  11500  fsum2dlemstep  11577  fisumcom2  11581  nfcprod1  11697  nfcprod  11698  bezoutlemmain  12135  cnmpt21  14459  setindis  15459  bdsetindis  15461  strcollnfALT  15478  isomninnlem  15520  iswomninnlem  15539  ismkvnnlem  15542
  Copyright terms: Public domain W3C validator