![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfralxy | Unicode version |
Description: Old name for nfralw 2527. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfralxy.1 |
![]() ![]() ![]() ![]() |
nfralxy.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfralxy |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1477 |
. . 3
![]() ![]() ![]() ![]() | |
2 | nfralxy.1 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | nfralxy.2 |
. . . 4
![]() ![]() ![]() ![]() | |
5 | 4 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 3, 5 | nfraldxy 2523 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | mptru 1373 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 |
This theorem is referenced by: nfra2xy 2532 rspc2 2867 sbcralt 3054 sbcralg 3056 raaanlem 3543 nfint 3869 nfiinxy 3928 nfpo 4319 nfso 4320 nfse 4359 nffrfor 4366 nfwe 4373 ralxpf 4791 funimaexglem 5318 fun11iun 5501 dff13f 5792 nfiso 5828 mpoeq123 5956 nfofr 6114 fmpox 6226 nfrecs 6333 xpf1o 6873 ac6sfi 6927 ismkvnex 7184 lble 8935 fzrevral 10137 nfsum1 11399 nfsum 11400 fsum2dlemstep 11477 fisumcom2 11481 nfcprod1 11597 nfcprod 11598 bezoutlemmain 12034 cnmpt21 14268 setindis 15197 bdsetindis 15199 strcollnfALT 15216 isomninnlem 15257 iswomninnlem 15276 ismkvnnlem 15279 |
Copyright terms: Public domain | W3C validator |