ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfralxy Unicode version

Theorem nfralxy 2544
Description: Old name for nfralw 2543. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfralxy.1  |-  F/_ x A
nfralxy.2  |-  F/ x ph
Assertion
Ref Expression
nfralxy  |-  F/ x A. y  e.  A  ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem nfralxy
StepHypRef Expression
1 nftru 1489 . . 3  |-  F/ y T.
2 nfralxy.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfralxy.2 . . . 4  |-  F/ x ph
54a1i 9 . . 3  |-  ( T. 
->  F/ x ph )
61, 3, 5nfraldxy 2539 . 2  |-  ( T. 
->  F/ x A. y  e.  A  ph )
76mptru 1382 1  |-  F/ x A. y  e.  A  ph
Colors of variables: wff set class
Syntax hints:   T. wtru 1374   F/wnf 1483   F/_wnfc 2335   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489
This theorem is referenced by:  nfra2xy  2548  rspc2  2888  sbcralt  3075  sbcralg  3077  raaanlem  3565  nfint  3895  nfiinxy  3954  nfpo  4349  nfso  4350  nfse  4389  nffrfor  4396  nfwe  4403  ralxpf  4825  funimaexglem  5358  fun11iun  5545  dff13f  5841  nfiso  5877  mpoeq123  6006  nfofr  6167  fmpox  6288  nfrecs  6395  xpf1o  6943  ac6sfi  6997  ismkvnex  7259  lble  9022  fzrevral  10229  nfsum1  11700  nfsum  11701  fsum2dlemstep  11778  fisumcom2  11782  nfcprod1  11898  nfcprod  11899  bezoutlemmain  12352  cnmpt21  14796  setindis  15940  bdsetindis  15942  strcollnfALT  15959  isomninnlem  16006  iswomninnlem  16025  ismkvnnlem  16028
  Copyright terms: Public domain W3C validator