| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfralxy | Unicode version | ||
| Description: Old name for nfralw 2567. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfralxy.1 |
|
| nfralxy.2 |
|
| Ref | Expression |
|---|---|
| nfralxy |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1512 |
. . 3
| |
| 2 | nfralxy.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | nfralxy.2 |
. . . 4
| |
| 5 | 4 | a1i 9 |
. . 3
|
| 6 | 1, 3, 5 | nfraldxy 2563 |
. 2
|
| 7 | 6 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: nfra2xy 2572 rspc2 2918 sbcralt 3105 sbcralg 3107 raaanlem 3596 nfint 3933 nfiinxy 3992 nfpo 4392 nfso 4393 nfse 4432 nffrfor 4439 nfwe 4446 ralxpf 4868 funimaexglem 5404 fun11iun 5593 dff13f 5894 nfiso 5930 mpoeq123 6063 nfofr 6225 fmpox 6346 nfrecs 6453 xpf1o 7005 ac6sfi 7060 ismkvnex 7322 lble 9094 fzrevral 10301 nfsum1 11867 nfsum 11868 fsum2dlemstep 11945 fisumcom2 11949 nfcprod1 12065 nfcprod 12066 bezoutlemmain 12519 cnmpt21 14965 setindis 16330 bdsetindis 16332 strcollnfALT 16349 isomninnlem 16398 iswomninnlem 16417 ismkvnnlem 16420 |
| Copyright terms: Public domain | W3C validator |