ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaanv Unicode version

Theorem raaanv 3557
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
Assertion
Ref Expression
raaanv  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Distinct variable groups:    ph, y    ps, x    x, y, A
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem raaanv
StepHypRef Expression
1 nfv 1542 . 2  |-  F/ y
ph
2 nfv 1542 . 2  |-  F/ x ps
31, 2raaan 3556 1  |-  ( A. x  e.  A  A. y  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. y  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  reusv3i  4494  f1mpt  5818
  Copyright terms: Public domain W3C validator