ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbss Unicode version

Theorem sbss 3558
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sbss  |-  ( [ y  /  x ]
x  C_  A  <->  y  C_  A )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem sbss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . 2  |-  y  e. 
_V
2 sbequ 1854 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] x  C_  A  <->  [ y  /  x ] x  C_  A ) )
3 sseq1 3206 . 2  |-  ( z  =  y  ->  (
z  C_  A  <->  y  C_  A ) )
4 nfv 1542 . . 3  |-  F/ x  z  C_  A
5 sseq1 3206 . . 3  |-  ( x  =  z  ->  (
x  C_  A  <->  z  C_  A ) )
64, 5sbie 1805 . 2  |-  ( [ z  /  x ]
x  C_  A  <->  z  C_  A )
71, 2, 3, 6vtoclb 2821 1  |-  ( [ y  /  x ]
x  C_  A  <->  y  C_  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1776    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator