ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbss Unicode version

Theorem sbss 3396
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sbss  |-  ( [ y  /  x ]
x  C_  A  <->  y  C_  A )
Distinct variable group:    x, A
Allowed substitution hint:    A( y)

Proof of Theorem sbss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2625 . 2  |-  y  e. 
_V
2 sbequ 1769 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] x  C_  A  <->  [ y  /  x ] x  C_  A ) )
3 sseq1 3050 . 2  |-  ( z  =  y  ->  (
z  C_  A  <->  y  C_  A ) )
4 nfv 1467 . . 3  |-  F/ x  z  C_  A
5 sseq1 3050 . . 3  |-  ( x  =  z  ->  (
x  C_  A  <->  z  C_  A ) )
64, 5sbie 1722 . 2  |-  ( [ z  /  x ]
x  C_  A  <->  z  C_  A )
71, 2, 3, 6vtoclb 2679 1  |-  ( [ y  /  x ]
x  C_  A  <->  y  C_  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1693    C_ wss 3002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-v 2624  df-in 3008  df-ss 3015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator