| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1mpt | Unicode version | ||
| Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1mpt.1 |
|
| f1mpt.2 |
|
| Ref | Expression |
|---|---|
| f1mpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1mpt.1 |
. . . 4
| |
| 2 | nfmpt1 4176 |
. . . 4
| |
| 3 | 1, 2 | nfcxfr 2369 |
. . 3
|
| 4 | nfcv 2372 |
. . 3
| |
| 5 | 3, 4 | dff13f 5893 |
. 2
|
| 6 | 1 | fmpt 5784 |
. . 3
|
| 7 | 6 | anbi1i 458 |
. 2
|
| 8 | f1mpt.2 |
. . . . . . 7
| |
| 9 | 8 | eleq1d 2298 |
. . . . . 6
|
| 10 | 9 | cbvralv 2765 |
. . . . 5
|
| 11 | raaanv 3598 |
. . . . . 6
| |
| 12 | 1 | fvmpt2 5717 |
. . . . . . . . . . . . . 14
|
| 13 | 8, 1 | fvmptg 5709 |
. . . . . . . . . . . . . 14
|
| 14 | 12, 13 | eqeqan12d 2245 |
. . . . . . . . . . . . 13
|
| 15 | 14 | an4s 590 |
. . . . . . . . . . . 12
|
| 16 | 15 | imbi1d 231 |
. . . . . . . . . . 11
|
| 17 | 16 | ex 115 |
. . . . . . . . . 10
|
| 18 | 17 | ralimdva 2597 |
. . . . . . . . 9
|
| 19 | ralbi 2663 |
. . . . . . . . 9
| |
| 20 | 18, 19 | syl6 33 |
. . . . . . . 8
|
| 21 | 20 | ralimia 2591 |
. . . . . . 7
|
| 22 | ralbi 2663 |
. . . . . . 7
| |
| 23 | 21, 22 | syl 14 |
. . . . . 6
|
| 24 | 11, 23 | sylbir 135 |
. . . . 5
|
| 25 | 10, 24 | sylan2b 287 |
. . . 4
|
| 26 | 25 | anidms 397 |
. . 3
|
| 27 | 26 | pm5.32i 454 |
. 2
|
| 28 | 5, 7, 27 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fv 5325 |
| This theorem is referenced by: 1domsn 6974 difinfsnlem 7262 4sqlemffi 12914 uspgredg2v 16013 usgredg2v 16016 |
| Copyright terms: Public domain | W3C validator |