ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1mpt Unicode version

Theorem f1mpt 5774
Description: Express injection for a mapping operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
f1mpt.1  |-  F  =  ( x  e.  A  |->  C )
f1mpt.2  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
f1mpt  |-  ( F : A -1-1-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    y, F
Allowed substitution hints:    C( x)    D( y)    F( x)

Proof of Theorem f1mpt
StepHypRef Expression
1 f1mpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  C )
2 nfmpt1 4098 . . . 4  |-  F/_ x
( x  e.  A  |->  C )
31, 2nfcxfr 2316 . . 3  |-  F/_ x F
4 nfcv 2319 . . 3  |-  F/_ y F
53, 4dff13f 5773 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
61fmpt 5668 . . 3  |-  ( A. x  e.  A  C  e.  B  <->  F : A --> B )
76anbi1i 458 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( F : A
--> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
8 f1mpt.2 . . . . . . 7  |-  ( x  =  y  ->  C  =  D )
98eleq1d 2246 . . . . . 6  |-  ( x  =  y  ->  ( C  e.  B  <->  D  e.  B ) )
109cbvralv 2705 . . . . 5  |-  ( A. x  e.  A  C  e.  B  <->  A. y  e.  A  D  e.  B )
11 raaanv 3532 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  <->  ( A. x  e.  A  C  e.  B  /\  A. y  e.  A  D  e.  B ) )
121fvmpt2 5601 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  C  e.  B )  ->  ( F `  x
)  =  C )
138, 1fvmptg 5594 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  D  e.  B )  ->  ( F `  y
)  =  D )
1412, 13eqeqan12d 2193 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  C  e.  B
)  /\  ( y  e.  A  /\  D  e.  B ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
C  =  D ) )
1514an4s 588 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( C  e.  B  /\  D  e.  B ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
C  =  D ) )
1615imbi1d 231 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( C  e.  B  /\  D  e.  B ) )  -> 
( ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) ) )
1716ex 115 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( C  e.  B  /\  D  e.  B )  ->  (
( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) ) ) )
1817ralimdva 2544 . . . . . . . . 9  |-  ( x  e.  A  ->  ( A. y  e.  A  ( C  e.  B  /\  D  e.  B
)  ->  A. y  e.  A  ( (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
) ) )
19 ralbi 2609 . . . . . . . . 9  |-  ( A. y  e.  A  (
( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y ) )  -> 
( A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2018, 19syl6 33 . . . . . . . 8  |-  ( x  e.  A  ->  ( A. y  e.  A  ( C  e.  B  /\  D  e.  B
)  ->  ( A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y )
) ) )
2120ralimia 2538 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  ->  A. x  e.  A  ( A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
22 ralbi 2609 . . . . . . 7  |-  ( A. x  e.  A  ( A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2321, 22syl 14 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  e.  B  /\  D  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2411, 23sylbir 135 . . . . 5  |-  ( ( A. x  e.  A  C  e.  B  /\  A. y  e.  A  D  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2510, 24sylan2b 287 . . . 4  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  C  e.  B )  ->  ( A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2625anidms 397 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ( A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
2726pm5.32i 454 . 2  |-  ( ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
285, 7, 273bitr2i 208 1  |-  ( F : A -1-1-> B  <->  ( A. x  e.  A  C  e.  B  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    |-> cmpt 4066   -->wf 5214   -1-1->wf1 5215   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fv 5226
This theorem is referenced by:  1domsn  6821  difinfsnlem  7100
  Copyright terms: Public domain W3C validator