ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raaanv GIF version

Theorem raaanv 3545
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
Assertion
Ref Expression
raaanv (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem raaanv
StepHypRef Expression
1 nfv 1539 . 2 𝑦𝜑
2 nfv 1539 . 2 𝑥𝜓
31, 2raaan 3544 1 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wral 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473
This theorem is referenced by:  reusv3i  4477  f1mpt  5793
  Copyright terms: Public domain W3C validator