ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva2 Unicode version

Theorem rabbidva2 2726
Description: Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypothesis
Ref Expression
rabbidva2.1  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
Assertion
Ref Expression
rabbidva2  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem rabbidva2
StepHypRef Expression
1 rabbidva2.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch ) ) )
21abbidv 2295 . 2  |-  ( ph  ->  { x  |  ( x  e.  A  /\  ps ) }  =  {
x  |  ( x  e.  B  /\  ch ) } )
3 df-rab 2464 . 2  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
4 df-rab 2464 . 2  |-  { x  e.  B  |  ch }  =  { x  |  ( x  e.  B  /\  ch ) }
52, 3, 43eqtr4g 2235 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-rab 2464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator