ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva Unicode version

Theorem rabbidva 2787
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rabbidva  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  <->  ch ) )
3 rabbi 2709 . 2  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
42, 3sylib 122 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-ral 2513  df-rab 2517
This theorem is referenced by:  rabbidv  2788  rabeqbidva  2795  rabbi2dva  3412  rabxfrd  4560  onsucmin  4599  seinxp  4790  fniniseg2  5757  fnniniseg2  5758  f1oresrab  5800  dfinfre  9103  minmax  11741  xrminmax  11776  iooinsup  11788  gcdass  12536  lcmass  12607  pcneg  12848  bdbl  15177  xmetxpbl  15182  lgsquadlem1  15756  lgsquadlem2  15757  2lgslem1a  15767  2omap  16359  pw1map  16361
  Copyright terms: Public domain W3C validator