ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva Unicode version

Theorem rabbidva 2748
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rabbidva  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21ralrimiva 2567 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  <->  ch ) )
3 rabbi 2672 . 2  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
42, 3sylib 122 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-ral 2477  df-rab 2481
This theorem is referenced by:  rabbidv  2749  rabeqbidva  2756  rabbi2dva  3368  rabxfrd  4501  onsucmin  4540  seinxp  4731  fniniseg2  5681  fnniniseg2  5682  f1oresrab  5724  dfinfre  8977  minmax  11376  xrminmax  11411  iooinsup  11423  gcdass  12155  lcmass  12226  pcneg  12466  bdbl  14682  xmetxpbl  14687  lgsquadlem1  15234  lgsquadlem2  15235  2lgslem1a  15245
  Copyright terms: Public domain W3C validator