ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva Unicode version

Theorem rabbidva 2751
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rabbidva  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21ralrimiva 2570 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  <->  ch ) )
3 rabbi 2675 . 2  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
42, 3sylib 122 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-ral 2480  df-rab 2484
This theorem is referenced by:  rabbidv  2752  rabeqbidva  2759  rabbi2dva  3371  rabxfrd  4504  onsucmin  4543  seinxp  4734  fniniseg2  5684  fnniniseg2  5685  f1oresrab  5727  dfinfre  8983  minmax  11395  xrminmax  11430  iooinsup  11442  gcdass  12182  lcmass  12253  pcneg  12494  bdbl  14739  xmetxpbl  14744  lgsquadlem1  15318  lgsquadlem2  15319  2lgslem1a  15329
  Copyright terms: Public domain W3C validator