ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbii Unicode version

Theorem rabbii 2758
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2761. (Contributed by Peter Mazsa, 1-Nov-2019.)
Hypothesis
Ref Expression
rabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
rabbii  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }

Proof of Theorem rabbii
StepHypRef Expression
1 rabbii.1 . . 3  |-  ( ph  <->  ps )
21a1i 9 . 2  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
32rabbiia 2757 1  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2176   {crab 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-rab 2493
This theorem is referenced by:  dfdif3  3283  suplocexpr  7838  dfrhm2  13916  dmtopon  14495
  Copyright terms: Public domain W3C validator