ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbii Unicode version

Theorem rabbii 2712
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2715. (Contributed by Peter Mazsa, 1-Nov-2019.)
Hypothesis
Ref Expression
rabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
rabbii  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }

Proof of Theorem rabbii
StepHypRef Expression
1 rabbii.1 . . 3  |-  ( ph  <->  ps )
21a1i 9 . 2  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
32rabbiia 2711 1  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-rab 2453
This theorem is referenced by:  dfdif3  3232  suplocexpr  7666  dmtopon  12661
  Copyright terms: Public domain W3C validator