Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbii | Unicode version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2715. (Contributed by Peter Mazsa, 1-Nov-2019.) |
Ref | Expression |
---|---|
rabbii.1 |
Ref | Expression |
---|---|
rabbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbii.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | 2 | rabbiia 2711 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-rab 2453 |
This theorem is referenced by: dfdif3 3232 suplocexpr 7666 dmtopon 12661 |
Copyright terms: Public domain | W3C validator |