ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbii Unicode version

Theorem rabbii 2725
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2728. (Contributed by Peter Mazsa, 1-Nov-2019.)
Hypothesis
Ref Expression
rabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
rabbii  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }

Proof of Theorem rabbii
StepHypRef Expression
1 rabbii.1 . . 3  |-  ( ph  <->  ps )
21a1i 9 . 2  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
32rabbiia 2724 1  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-rab 2464
This theorem is referenced by:  dfdif3  3247  suplocexpr  7726  dmtopon  13608
  Copyright terms: Public domain W3C validator