![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4g.2 |
![]() ![]() ![]() ![]() |
3eqtr4g.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5eq 2159 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4g.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl6eqr 2165 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1406 ax-gen 1408 ax-4 1470 ax-17 1489 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-cleq 2108 |
This theorem is referenced by: rabbidva2 2644 rabeqf 2647 csbeq1 2974 csbeq2d 2993 csbnestgf 3018 difeq1 3153 difeq2 3154 uneq2 3190 ineq2 3237 dfrab3ss 3320 ifeq1 3443 ifeq2 3444 ifbi 3458 pweq 3479 sneq 3504 csbsng 3550 rabsn 3556 preq1 3566 preq2 3567 tpeq1 3575 tpeq2 3576 tpeq3 3577 prprc1 3597 opeq1 3671 opeq2 3672 oteq1 3680 oteq2 3681 oteq3 3682 csbunig 3710 unieq 3711 inteq 3740 iineq1 3793 iineq2 3796 dfiin2g 3812 iinrabm 3841 iinin1m 3848 iinxprg 3853 opabbid 3953 mpteq12f 3968 suceq 4284 xpeq1 4513 xpeq2 4514 csbxpg 4580 csbdmg 4693 rneq 4726 reseq1 4771 reseq2 4772 csbresg 4780 resindm 4819 resmpt 4825 resmptf 4827 imaeq1 4834 imaeq2 4835 mptcnv 4899 csbrng 4958 dmpropg 4969 rnpropg 4976 cores 5000 cores2 5009 xpcom 5043 iotaeq 5054 iotabi 5055 fntpg 5137 funimaexg 5165 fveq1 5374 fveq2 5375 fvres 5399 csbfv12g 5411 fnimapr 5435 fndmin 5481 fprg 5557 fsnunfv 5575 fsnunres 5576 fliftf 5654 isoini2 5674 riotaeqdv 5685 riotabidv 5686 riotauni 5690 riotabidva 5700 snriota 5713 oveq 5734 oveq1 5735 oveq2 5736 oprabbid 5778 mpoeq123 5784 mpoeq123dva 5786 mpoeq3dva 5789 resmpo 5823 ovres 5864 f1ocnvd 5926 ofeq 5938 ofreq 5939 f1od2 6086 ovtposg 6110 recseq 6157 tfr2a 6172 rdgeq1 6222 rdgeq2 6223 freceq1 6243 freceq2 6244 eceq1 6418 eceq2 6420 qseq1 6431 qseq2 6432 uniqs 6441 ecinxp 6458 qsinxp 6459 erovlem 6475 ixpeq1 6557 supeq1 6825 supeq2 6828 supeq3 6829 supeq123d 6830 infeq1 6850 infeq2 6853 infeq3 6854 infeq123d 6855 infisoti 6871 djueq12 6876 addpiord 7072 mulpiord 7073 00sr 7512 negeq 7878 csbnegg 7883 negsubdi 7941 mulneg1 8076 deceq1 9090 deceq2 9091 xnegeq 9503 fseq1p1m1 9767 frec2uzsucd 10067 frec2uzrdg 10075 frecuzrdgsuc 10080 frecuzrdgg 10082 frecuzrdgsuctlem 10089 seqeq1 10114 seqeq2 10115 seqeq3 10116 seqvalcd 10125 seq3f1olemp 10168 hashprg 10447 shftdm 10487 resqrexlemfp1 10673 negfi 10891 sumeq1 11016 sumeq2 11020 zsumdc 11045 isumss2 11054 fsumsplitsnun 11080 isumclim3 11084 fisumcom2 11099 isumshft 11151 ege2le3 11228 efgt1p2 11252 dfphi2 11741 sloteq 11807 setsslid 11852 metreslem 12369 comet 12488 cnmetdval 12518 |
Copyright terms: Public domain | W3C validator |