![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4g.2 |
![]() ![]() ![]() ![]() |
3eqtr4g.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrid 2222 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4g.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr4di 2228 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-4 1510 ax-17 1526 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 |
This theorem is referenced by: rabbidva2 2726 rabeqf 2729 csbeq1 3062 csbeq2 3083 csbeq2d 3084 csbnestgf 3111 difeq1 3248 difeq2 3249 uneq2 3285 ineq2 3332 dfrab3ss 3415 ifeq1 3539 ifeq2 3540 ifbi 3556 pweq 3580 sneq 3605 csbsng 3655 rabsn 3661 preq1 3671 preq2 3672 tpeq1 3680 tpeq2 3681 tpeq3 3682 prprc1 3702 opeq1 3780 opeq2 3781 oteq1 3789 oteq2 3790 oteq3 3791 csbunig 3819 unieq 3820 inteq 3849 iineq1 3902 iineq2 3905 dfiin2g 3921 iinrabm 3951 iinin1m 3958 iinxprg 3963 opabbid 4070 mpteq12f 4085 suceq 4404 xpeq1 4642 xpeq2 4643 csbxpg 4709 csbdmg 4823 rneq 4856 reseq1 4903 reseq2 4904 csbresg 4912 resindm 4951 resmpt 4957 resmptf 4959 imaeq1 4967 imaeq2 4968 mptcnv 5033 csbrng 5092 dmpropg 5103 rnpropg 5110 cores 5134 cores2 5143 xpcom 5177 iotaeq 5188 iotabi 5189 fntpg 5274 funimaexg 5302 fveq1 5516 fveq2 5517 fvres 5541 csbfv12g 5553 fnimapr 5578 fndmin 5625 fprg 5701 fsnunfv 5719 fsnunres 5720 fliftf 5802 isoini2 5822 riotaeqdv 5834 riotabidv 5835 riotauni 5839 riotabidva 5849 snriota 5862 oveq 5883 oveq1 5884 oveq2 5885 oprabbid 5930 mpoeq123 5936 mpoeq123dva 5938 mpoeq3dva 5941 resmpo 5975 ovres 6016 f1ocnvd 6075 ofeq 6087 ofreq 6088 f1od2 6238 ovtposg 6262 recseq 6309 tfr2a 6324 rdgeq1 6374 rdgeq2 6375 freceq1 6395 freceq2 6396 eceq1 6572 eceq2 6574 qseq1 6585 qseq2 6586 uniqs 6595 ecinxp 6612 qsinxp 6613 erovlem 6629 ixpeq1 6711 supeq1 6987 supeq2 6990 supeq3 6991 supeq123d 6992 infeq1 7012 infeq2 7015 infeq3 7016 infeq123d 7017 infisoti 7033 djueq12 7040 addpiord 7317 mulpiord 7318 00sr 7770 negeq 8152 csbnegg 8157 negsubdi 8215 mulneg1 8354 deceq1 9390 deceq2 9391 xnegeq 9829 fseq1p1m1 10096 frec2uzsucd 10403 frec2uzrdg 10411 frecuzrdgsuc 10416 frecuzrdgg 10418 frecuzrdgsuctlem 10425 seqeq1 10450 seqeq2 10451 seqeq3 10452 seqvalcd 10461 seq3f1olemp 10504 hashprg 10790 shftdm 10833 resqrexlemfp1 11020 negfi 11238 sumeq1 11365 sumeq2 11369 zsumdc 11394 isumss2 11403 fsumsplitsnun 11429 isumclim3 11433 fisumcom2 11448 isumshft 11500 prodeq1f 11562 prodeq2w 11566 prodeq2 11567 zproddc 11589 fprodm1s 11611 fprodp1s 11612 fprodcom2fi 11636 fprodsplitf 11642 ege2le3 11681 efgt1p2 11705 dfphi2 12222 prmdiveq 12238 pceulem 12296 sloteq 12469 setsslid 12515 ressval2 12528 ringidvalg 13149 metreslem 13919 comet 14038 cnmetdval 14068 lgsdi 14477 lgseisenlem2 14490 redcwlpolemeq1 14841 |
Copyright terms: Public domain | W3C validator |