![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3eqtr4g.2 |
![]() ![]() ![]() ![]() |
3eqtr4g.3 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3eqtr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 3eqtr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtrid 2238 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3eqtr4g.3 |
. 2
![]() ![]() ![]() ![]() | |
5 | 3, 4 | eqtr4di 2244 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: rabbidva2 2747 rabeqf 2750 csbeq1 3084 csbeq2 3105 csbeq2d 3106 csbnestgf 3134 difeq1 3271 difeq2 3272 uneq2 3308 ineq2 3355 dfrab3ss 3438 ifeq1 3561 ifeq2 3562 ifbi 3578 pweq 3605 sneq 3630 csbsng 3680 rabsn 3686 preq1 3696 preq2 3697 tpeq1 3705 tpeq2 3706 tpeq3 3707 prprc1 3727 opeq1 3805 opeq2 3806 oteq1 3814 oteq2 3815 oteq3 3816 csbunig 3844 unieq 3845 inteq 3874 iineq1 3927 iineq2 3930 dfiin2g 3946 iinrabm 3976 iinin1m 3983 iinxprg 3988 opabbid 4095 mpteq12f 4110 suceq 4434 xpeq1 4674 xpeq2 4675 csbxpg 4741 csbdmg 4857 rneq 4890 reseq1 4937 reseq2 4938 csbresg 4946 resindm 4985 resmpt 4991 resmptf 4993 imaeq1 5001 imaeq2 5002 mptcnv 5069 csbrng 5128 dmpropg 5139 rnpropg 5146 cores 5170 cores2 5179 xpcom 5213 iotaeq 5224 iotabi 5225 fntpg 5311 funimaexg 5339 fveq1 5554 fveq2 5555 fvres 5579 csbfv12g 5593 fnimapr 5618 fndmin 5666 fprg 5742 fsnunfv 5760 fsnunres 5761 fliftf 5843 isoini2 5863 riotaeqdv 5875 riotabidv 5876 riotauni 5881 riotabidva 5891 snriota 5904 oveq 5925 oveq1 5926 oveq2 5927 oprabbid 5972 mpoeq123 5978 mpoeq123dva 5980 mpoeq3dva 5983 resmpo 6017 ovres 6060 f1ocnvd 6122 ofeqd 6134 ofeq 6135 ofreq 6136 f1od2 6290 ovtposg 6314 recseq 6361 tfr2a 6376 rdgeq1 6426 rdgeq2 6427 freceq1 6447 freceq2 6448 eceq1 6624 eceq2 6626 qseq1 6639 qseq2 6640 uniqs 6649 ecinxp 6666 qsinxp 6667 erovlem 6683 ixpeq1 6765 supeq1 7047 supeq2 7050 supeq3 7051 supeq123d 7052 infeq1 7072 infeq2 7075 infeq3 7076 infeq123d 7077 infisoti 7093 djueq12 7100 addpiord 7378 mulpiord 7379 00sr 7831 negeq 8214 csbnegg 8219 negsubdi 8277 mulneg1 8416 deceq1 9455 deceq2 9456 xnegeq 9896 fseq1p1m1 10163 frec2uzsucd 10475 frec2uzrdg 10483 frecuzrdgsuc 10488 frecuzrdgg 10490 frecuzrdgsuctlem 10497 seqeq1 10524 seqeq2 10525 seqeq3 10526 seqvalcd 10535 seq3f1olemp 10589 hashprg 10882 shftdm 10969 resqrexlemfp1 11156 negfi 11374 sumeq1 11501 sumeq2 11505 zsumdc 11530 isumss2 11539 fsumsplitsnun 11565 isumclim3 11569 fisumcom2 11584 isumshft 11636 prodeq1f 11698 prodeq2w 11702 prodeq2 11703 zproddc 11725 fprodm1s 11747 fprodp1s 11748 fprodcom2fi 11772 fprodsplitf 11778 ege2le3 11817 efgt1p2 11841 dfphi2 12361 prmdiveq 12377 pceulem 12435 sloteq 12626 setsslid 12672 ressval2 12687 ecqusaddd 13311 ringidvalg 13460 zrhpropd 14125 metreslem 14559 comet 14678 cnmetdval 14708 dvmptfsum 14904 dvply1 14943 lgsdi 15194 lgseisenlem2 15228 lgsquadlem3 15236 redcwlpolemeq1 15614 |
Copyright terms: Public domain | W3C validator |