Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4g | Unicode version |
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3eqtr4g.1 | |
3eqtr4g.2 | |
3eqtr4g.3 |
Ref | Expression |
---|---|
3eqtr4g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4g.2 | . . 3 | |
2 | 3eqtr4g.1 | . . 3 | |
3 | 1, 2 | syl5eq 2211 | . 2 |
4 | 3eqtr4g.3 | . 2 | |
5 | 3, 4 | eqtr4di 2217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: rabbidva2 2713 rabeqf 2716 csbeq1 3048 csbeq2 3069 csbeq2d 3070 csbnestgf 3097 difeq1 3233 difeq2 3234 uneq2 3270 ineq2 3317 dfrab3ss 3400 ifeq1 3523 ifeq2 3524 ifbi 3540 pweq 3562 sneq 3587 csbsng 3637 rabsn 3643 preq1 3653 preq2 3654 tpeq1 3662 tpeq2 3663 tpeq3 3664 prprc1 3684 opeq1 3758 opeq2 3759 oteq1 3767 oteq2 3768 oteq3 3769 csbunig 3797 unieq 3798 inteq 3827 iineq1 3880 iineq2 3883 dfiin2g 3899 iinrabm 3928 iinin1m 3935 iinxprg 3940 opabbid 4047 mpteq12f 4062 suceq 4380 xpeq1 4618 xpeq2 4619 csbxpg 4685 csbdmg 4798 rneq 4831 reseq1 4878 reseq2 4879 csbresg 4887 resindm 4926 resmpt 4932 resmptf 4934 imaeq1 4941 imaeq2 4942 mptcnv 5006 csbrng 5065 dmpropg 5076 rnpropg 5083 cores 5107 cores2 5116 xpcom 5150 iotaeq 5161 iotabi 5162 fntpg 5244 funimaexg 5272 fveq1 5485 fveq2 5486 fvres 5510 csbfv12g 5522 fnimapr 5546 fndmin 5592 fprg 5668 fsnunfv 5686 fsnunres 5687 fliftf 5767 isoini2 5787 riotaeqdv 5799 riotabidv 5800 riotauni 5804 riotabidva 5814 snriota 5827 oveq 5848 oveq1 5849 oveq2 5850 oprabbid 5895 mpoeq123 5901 mpoeq123dva 5903 mpoeq3dva 5906 resmpo 5940 ovres 5981 f1ocnvd 6040 ofeq 6052 ofreq 6053 f1od2 6203 ovtposg 6227 recseq 6274 tfr2a 6289 rdgeq1 6339 rdgeq2 6340 freceq1 6360 freceq2 6361 eceq1 6536 eceq2 6538 qseq1 6549 qseq2 6550 uniqs 6559 ecinxp 6576 qsinxp 6577 erovlem 6593 ixpeq1 6675 supeq1 6951 supeq2 6954 supeq3 6955 supeq123d 6956 infeq1 6976 infeq2 6979 infeq3 6980 infeq123d 6981 infisoti 6997 djueq12 7004 addpiord 7257 mulpiord 7258 00sr 7710 negeq 8091 csbnegg 8096 negsubdi 8154 mulneg1 8293 deceq1 9326 deceq2 9327 xnegeq 9763 fseq1p1m1 10029 frec2uzsucd 10336 frec2uzrdg 10344 frecuzrdgsuc 10349 frecuzrdgg 10351 frecuzrdgsuctlem 10358 seqeq1 10383 seqeq2 10384 seqeq3 10385 seqvalcd 10394 seq3f1olemp 10437 hashprg 10721 shftdm 10764 resqrexlemfp1 10951 negfi 11169 sumeq1 11296 sumeq2 11300 zsumdc 11325 isumss2 11334 fsumsplitsnun 11360 isumclim3 11364 fisumcom2 11379 isumshft 11431 prodeq1f 11493 prodeq2w 11497 prodeq2 11498 zproddc 11520 fprodm1s 11542 fprodp1s 11543 fprodcom2fi 11567 fprodsplitf 11573 ege2le3 11612 efgt1p2 11636 dfphi2 12152 prmdiveq 12168 pceulem 12226 sloteq 12399 setsslid 12444 metreslem 13020 comet 13139 cnmetdval 13169 lgsdi 13578 redcwlpolemeq1 13933 |
Copyright terms: Public domain | W3C validator |