ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqif Unicode version

Theorem rabeqif 2754
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 2753. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rabeqf.1  |-  F/_ x A
rabeqf.2  |-  F/_ x B
rabeqif.3  |-  A  =  B
Assertion
Ref Expression
rabeqif  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }

Proof of Theorem rabeqif
StepHypRef Expression
1 rabeqif.3 . 2  |-  A  =  B
2 rabeqf.1 . . 3  |-  F/_ x A
3 rabeqf.2 . . 3  |-  F/_ x B
42, 3rabeqf 2753 . 2  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
51, 4ax-mp 5 1  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   F/_wnfc 2326   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484
This theorem is referenced by:  rabeqi  2756
  Copyright terms: Public domain W3C validator