ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqif Unicode version

Theorem rabeqif 2717
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 2716. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rabeqf.1  |-  F/_ x A
rabeqf.2  |-  F/_ x B
rabeqif.3  |-  A  =  B
Assertion
Ref Expression
rabeqif  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }

Proof of Theorem rabeqif
StepHypRef Expression
1 rabeqif.3 . 2  |-  A  =  B
2 rabeqf.1 . . 3  |-  F/_ x A
3 rabeqf.2 . . 3  |-  F/_ x B
42, 3rabeqf 2716 . 2  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
51, 4ax-mp 5 1  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   F/_wnfc 2295   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453
This theorem is referenced by:  rabeqi  2719
  Copyright terms: Public domain W3C validator