ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqif GIF version

Theorem rabeqif 2754
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 2753. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
rabeqf.1 𝑥𝐴
rabeqf.2 𝑥𝐵
rabeqif.3 𝐴 = 𝐵
Assertion
Ref Expression
rabeqif {𝑥𝐴𝜑} = {𝑥𝐵𝜑}

Proof of Theorem rabeqif
StepHypRef Expression
1 rabeqif.3 . 2 𝐴 = 𝐵
2 rabeqf.1 . . 3 𝑥𝐴
3 rabeqf.2 . . 3 𝑥𝐵
42, 3rabeqf 2753 . 2 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
51, 4ax-mp 5 1 {𝑥𝐴𝜑} = {𝑥𝐵𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wnfc 2326  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484
This theorem is referenced by:  rabeqi  2756
  Copyright terms: Public domain W3C validator