| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqif | GIF version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 2761. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabeqf.1 | ⊢ Ⅎ𝑥𝐴 |
| rabeqf.2 | ⊢ Ⅎ𝑥𝐵 |
| rabeqif.3 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| rabeqif | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqif.3 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | rabeqf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | rabeqf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | rabeqf 2761 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 Ⅎwnfc 2334 {crab 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 |
| This theorem is referenced by: rabeqi 2764 |
| Copyright terms: Public domain | W3C validator |