![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeqif | GIF version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf 2609. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabeqf.1 | ⊢ Ⅎ𝑥𝐴 |
rabeqf.2 | ⊢ Ⅎ𝑥𝐵 |
rabeqif.3 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
rabeqif | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqif.3 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | rabeqf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | rabeqf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | rabeqf 2609 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
5 | 1, 4 | ax-mp 7 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 Ⅎwnfc 2215 {crab 2363 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rab 2368 |
This theorem is referenced by: rabeqi 2612 |
Copyright terms: Public domain | W3C validator |