| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqi | Unicode version | ||
| Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2755. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| rabeqi.1 |
|
| Ref | Expression |
|---|---|
| rabeqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. 2
| |
| 2 | nfcv 2339 |
. 2
| |
| 3 | rabeqi.1 |
. 2
| |
| 4 | 1, 2, 3 | rabeqif 2754 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 |
| This theorem is referenced by: bitsfzolem 12118 lcmval 12231 lcmcllem 12235 lcmledvds 12238 phimullem 12393 odzcllem 12411 odzdvds 12414 4sqlem13m 12572 4sqlem14 12573 4sqlem17 12576 4sqlem18 12577 |
| Copyright terms: Public domain | W3C validator |