ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqi Unicode version

Theorem rabeqi 2728
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2727. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqi.1  |-  A  =  B
Assertion
Ref Expression
rabeqi  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rabeqi
StepHypRef Expression
1 nfcv 2317 . 2  |-  F/_ x A
2 nfcv 2317 . 2  |-  F/_ x B
3 rabeqi.1 . 2  |-  A  =  B
41, 2, 3rabeqif 2726 1  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1353   {crab 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rab 2462
This theorem is referenced by:  phimullem  12192  odzcllem  12209  odzdvds  12212
  Copyright terms: Public domain W3C validator