![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeqi | Unicode version |
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2752. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabeqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rabeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
3 | rabeqi.1 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | rabeqif 2751 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 |
This theorem is referenced by: lcmval 12201 lcmcllem 12205 lcmledvds 12208 phimullem 12363 odzcllem 12380 odzdvds 12383 4sqlem13m 12541 4sqlem14 12542 4sqlem17 12545 4sqlem18 12546 |
Copyright terms: Public domain | W3C validator |