ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqi Unicode version

Theorem rabeqi 2765
Description: Equality theorem for restricted class abstractions. Inference form of rabeq 2764. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabeqi.1  |-  A  =  B
Assertion
Ref Expression
rabeqi  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rabeqi
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ x A
2 nfcv 2348 . 2  |-  F/_ x B
3 rabeqi.1 . 2  |-  A  =  B
41, 2, 3rabeqif 2763 1  |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   {crab 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493
This theorem is referenced by:  bitsfzolem  12298  lcmval  12418  lcmcllem  12422  lcmledvds  12425  phimullem  12580  odzcllem  12598  odzdvds  12601  4sqlem13m  12759  4sqlem14  12760  4sqlem17  12763  4sqlem18  12764
  Copyright terms: Public domain W3C validator