| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq | Unicode version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| rabeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfcv 2350 |
. 2
| |
| 3 | 1, 2 | rabeqf 2766 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 |
| This theorem is referenced by: rabeqdv 2770 rabeqbidv 2771 rabeqbidva 2772 difeq1 3292 ifeq1 3582 ifeq2 3583 elfvmptrab 5698 pmvalg 6769 unfiexmid 7041 ssfirab 7059 supeq2 7117 iooval2 10072 fzval2 10168 clsfval 14688 incistruhgr 15801 |
| Copyright terms: Public domain | W3C validator |