ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq Unicode version

Theorem rabeq 2752
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
rabeq  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rabeq
StepHypRef Expression
1 nfcv 2336 . 2  |-  F/_ x A
2 nfcv 2336 . 2  |-  F/_ x B
31, 2rabeqf 2750 1  |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481
This theorem is referenced by:  rabeqdv  2754  rabeqbidv  2755  rabeqbidva  2756  difeq1  3270  ifeq1  3560  ifeq2  3561  elfvmptrab  5653  pmvalg  6713  unfiexmid  6974  ssfirab  6990  supeq2  7048  iooval2  9981  fzval2  10077  clsfval  14269
  Copyright terms: Public domain W3C validator