Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeq | Unicode version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 | |
2 | nfcv 2308 | . 2 | |
3 | 1, 2 | rabeqf 2716 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 |
This theorem is referenced by: rabeqdv 2720 rabeqbidv 2721 rabeqbidva 2722 difeq1 3233 ifeq1 3523 ifeq2 3524 elfvmptrab 5581 pmvalg 6625 unfiexmid 6883 ssfirab 6899 supeq2 6954 iooval2 9851 fzval2 9947 lcmval 11995 lcmcllem 11999 lcmledvds 12002 clsfval 12741 |
Copyright terms: Public domain | W3C validator |