![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabeq | Unicode version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2229 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2229 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | rabeqf 2610 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rab 2369 |
This theorem is referenced by: rabeqdv 2614 rabeqbidv 2615 rabeqbidva 2616 difeq1 3112 ifeq1 3400 ifeq2 3401 pmvalg 6430 unfiexmid 6682 ssfirab 6697 supeq2 6738 iooval2 9394 fzval2 9488 lcmval 11384 lcmcllem 11388 lcmledvds 11391 clsfval 11862 |
Copyright terms: Public domain | W3C validator |