ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsneu Unicode version

Theorem rabsneu 3632
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabsneu  |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x  e.  B  ph )

Proof of Theorem rabsneu
StepHypRef Expression
1 df-rab 2444 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
21eqeq1i 2165 . . 3  |-  ( { x  e.  B  |  ph }  =  { A } 
<->  { x  |  ( x  e.  B  /\  ph ) }  =  { A } )
3 absneu 3631 . . 3  |-  ( ( A  e.  V  /\  { x  |  ( x  e.  B  /\  ph ) }  =  { A } )  ->  E! x ( x  e.  B  /\  ph )
)
42, 3sylan2b 285 . 2  |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x ( x  e.  B  /\  ph )
)
5 df-reu 2442 . 2  |-  ( E! x  e.  B  ph  <->  E! x ( x  e.  B  /\  ph )
)
64, 5sylibr 133 1  |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   E!weu 2006    e. wcel 2128   {cab 2143   E!wreu 2437   {crab 2439   {csn 3560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-reu 2442  df-rab 2444  df-v 2714  df-sn 3566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator