Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabsneu | GIF version |
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsneu | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
2 | 1 | eqeq1i 2178 | . . 3 ⊢ ({𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴} ↔ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝐴}) |
3 | absneu 3655 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝐴}) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | sylan2b 285 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
5 | df-reu 2455 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃!weu 2019 ∈ wcel 2141 {cab 2156 ∃!wreu 2450 {crab 2452 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-reu 2455 df-rab 2457 df-v 2732 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |