![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabsneu | GIF version |
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsneu | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2464 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
2 | 1 | eqeq1i 2185 | . . 3 ⊢ ({𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴} ↔ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝐴}) |
3 | absneu 3666 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝐴}) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | sylan2b 287 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) |
5 | df-reu 2462 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
6 | 4, 5 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝐴}) → ∃!𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃!weu 2026 ∈ wcel 2148 {cab 2163 ∃!wreu 2457 {crab 2459 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-reu 2462 df-rab 2464 df-v 2741 df-sn 3600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |