ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusn Unicode version

Theorem eusn 3696
Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn  |-  ( E! x  x  e.  A  <->  E. x  A  =  {
x } )
Distinct variable group:    x, A

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 3692 . 2  |-  ( E! x  x  e.  A  <->  E. x { x  |  x  e.  A }  =  { x } )
2 abid2 2317 . . . 4  |-  { x  |  x  e.  A }  =  A
32eqeq1i 2204 . . 3  |-  ( { x  |  x  e.  A }  =  {
x }  <->  A  =  { x } )
43exbii 1619 . 2  |-  ( E. x { x  |  x  e.  A }  =  { x }  <->  E. x  A  =  { x } )
51, 4bitri 184 1  |-  ( E! x  x  e.  A  <->  E. x  A  =  {
x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   {cab 2182   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator