Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eusn | Unicode version |
Description: Two ways to express " is a singleton". (Contributed by NM, 30-Oct-2010.) |
Ref | Expression |
---|---|
eusn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euabsn 3659 | . 2 | |
2 | abid2 2296 | . . . 4 | |
3 | 2 | eqeq1i 2183 | . . 3 |
4 | 3 | exbii 1603 | . 2 |
5 | 1, 4 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 wex 1490 weu 2024 wcel 2146 cab 2161 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sn 3595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |