ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusn Unicode version

Theorem eusn 3668
Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn  |-  ( E! x  x  e.  A  <->  E. x  A  =  {
x } )
Distinct variable group:    x, A

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 3664 . 2  |-  ( E! x  x  e.  A  <->  E. x { x  |  x  e.  A }  =  { x } )
2 abid2 2298 . . . 4  |-  { x  |  x  e.  A }  =  A
32eqeq1i 2185 . . 3  |-  ( { x  |  x  e.  A }  =  {
x }  <->  A  =  { x } )
43exbii 1605 . 2  |-  ( E. x { x  |  x  e.  A }  =  { x }  <->  E. x  A  =  { x } )
51, 4bitri 184 1  |-  ( E! x  x  e.  A  <->  E. x  A  =  {
x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   {cab 2163   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sn 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator