ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusn Unicode version

Theorem eusn 3650
Description: Two ways to express " A is a singleton". (Contributed by NM, 30-Oct-2010.)
Assertion
Ref Expression
eusn  |-  ( E! x  x  e.  A  <->  E. x  A  =  {
x } )
Distinct variable group:    x, A

Proof of Theorem eusn
StepHypRef Expression
1 euabsn 3646 . 2  |-  ( E! x  x  e.  A  <->  E. x { x  |  x  e.  A }  =  { x } )
2 abid2 2287 . . . 4  |-  { x  |  x  e.  A }  =  A
32eqeq1i 2173 . . 3  |-  ( { x  |  x  e.  A }  =  {
x }  <->  A  =  { x } )
43exbii 1593 . 2  |-  ( E. x { x  |  x  e.  A }  =  { x }  <->  E. x  A  =  { x } )
51, 4bitri 183 1  |-  ( E! x  x  e.  A  <->  E. x  A  =  {
x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   {cab 2151   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator