| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 |
|
| Ref | Expression |
|---|---|
| eqeq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 |
. 2
| |
| 2 | eqeq1 2236 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: ssequn2 3377 dfss1 3408 disj 3540 disjr 3541 undisj1 3549 undisj2 3550 uneqdifeqim 3577 reusn 3737 rabsneu 3739 eusn 3740 iin0r 4253 opeqsn 4339 unisuc 4504 onsucelsucexmid 4622 sucprcreg 4641 onintexmid 4665 dmopab3 4936 dm0rn0 4940 ssdmres 5027 imadisj 5090 args 5097 intirr 5115 dminxp 5173 dfrel3 5186 cbviotavw 5284 fntpg 5377 fncnv 5387 f0rn0 5520 dff1o4 5580 dffv4g 5624 fvun2 5701 fnreseql 5745 funopdmsn 5819 riota1 5974 riota2df 5976 riotaeqimp 5979 fnbrovb 6046 fnotovb 6047 ovid 6121 ov 6124 ovg 6144 f1od2 6381 frec0g 6543 diffitest 7049 ismkvnex 7322 prarloclem5 7687 renegcl 8407 elznn0 9461 seqf1oglem1 10741 seqf1oglem2 10742 hashunlem 11026 maxclpr 11733 gausslemma2d 15748 lgseisenlem1 15749 2lgslem4 15782 edg0iedg0g 15866 ushgredgedg 16024 ushgredgedgloop 16026 ex-ceil 16090 nninfsellemqall 16381 nninfomni 16385 iswomni0 16419 |
| Copyright terms: Public domain | W3C validator |