| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 |
|
| Ref | Expression |
|---|---|
| eqeq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 |
. 2
| |
| 2 | eqeq1 2214 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: ssequn2 3354 dfss1 3385 disj 3517 disjr 3518 undisj1 3526 undisj2 3527 uneqdifeqim 3554 reusn 3714 rabsneu 3716 eusn 3717 iin0r 4229 opeqsn 4315 unisuc 4478 onsucelsucexmid 4596 sucprcreg 4615 onintexmid 4639 dmopab3 4910 dm0rn0 4914 ssdmres 5000 imadisj 5063 args 5070 intirr 5088 dminxp 5146 dfrel3 5159 fntpg 5349 fncnv 5359 f0rn0 5492 dff1o4 5552 dffv4g 5596 fvun2 5669 fnreseql 5713 funopdmsn 5787 riota1 5941 riota2df 5943 fnotovb 6011 ovid 6085 ov 6088 ovg 6108 f1od2 6344 frec0g 6506 diffitest 7010 ismkvnex 7283 prarloclem5 7648 renegcl 8368 elznn0 9422 seqf1oglem1 10701 seqf1oglem2 10702 hashunlem 10986 maxclpr 11648 gausslemma2d 15661 lgseisenlem1 15662 2lgslem4 15695 edg0iedg0g 15777 ex-ceil 15862 nninfsellemqall 16154 nninfomni 16158 iswomni0 16192 |
| Copyright terms: Public domain | W3C validator |