Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 |
Ref | Expression |
---|---|
eqeq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 | . 2 | |
2 | eqeq1 2182 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: ssequn2 3306 dfss1 3337 disj 3469 disjr 3470 undisj1 3478 undisj2 3479 uneqdifeqim 3506 reusn 3660 rabsneu 3662 eusn 3663 iin0r 4164 opeqsn 4246 unisuc 4407 onsucelsucexmid 4523 sucprcreg 4542 onintexmid 4566 dmopab3 4833 dm0rn0 4837 ssdmres 4922 imadisj 4983 args 4990 intirr 5007 dminxp 5065 dfrel3 5078 fntpg 5264 fncnv 5274 f0rn0 5402 dff1o4 5461 dffv4g 5504 fvun2 5575 fnreseql 5618 riota1 5839 riota2df 5841 fnotovb 5908 ovid 5981 ov 5984 ovg 6003 f1od2 6226 frec0g 6388 diffitest 6877 ismkvnex 7143 prarloclem5 7474 renegcl 8192 elznn0 9239 hashunlem 10750 maxclpr 11197 ex-ceil 14036 nninfsellemqall 14323 nninfomni 14327 iswomni0 14358 |
Copyright terms: Public domain | W3C validator |