![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqeq1 2200 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: ssequn2 3333 dfss1 3364 disj 3496 disjr 3497 undisj1 3505 undisj2 3506 uneqdifeqim 3533 reusn 3690 rabsneu 3692 eusn 3693 iin0r 4199 opeqsn 4282 unisuc 4445 onsucelsucexmid 4563 sucprcreg 4582 onintexmid 4606 dmopab3 4876 dm0rn0 4880 ssdmres 4965 imadisj 5028 args 5035 intirr 5053 dminxp 5111 dfrel3 5124 fntpg 5311 fncnv 5321 f0rn0 5449 dff1o4 5509 dffv4g 5552 fvun2 5625 fnreseql 5669 riota1 5893 riota2df 5895 fnotovb 5962 ovid 6036 ov 6039 ovg 6059 f1od2 6290 frec0g 6452 diffitest 6945 ismkvnex 7216 prarloclem5 7562 renegcl 8282 elznn0 9335 seqf1oglem1 10593 seqf1oglem2 10594 hashunlem 10878 maxclpr 11369 gausslemma2d 15226 lgseisenlem1 15227 2lgslem4 15260 ex-ceil 15288 nninfsellemqall 15575 nninfomni 15579 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |