| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 |
|
| Ref | Expression |
|---|---|
| eqeq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 |
. 2
| |
| 2 | eqeq1 2212 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: ssequn2 3346 dfss1 3377 disj 3509 disjr 3510 undisj1 3518 undisj2 3519 uneqdifeqim 3546 reusn 3704 rabsneu 3706 eusn 3707 iin0r 4213 opeqsn 4297 unisuc 4460 onsucelsucexmid 4578 sucprcreg 4597 onintexmid 4621 dmopab3 4891 dm0rn0 4895 ssdmres 4981 imadisj 5044 args 5051 intirr 5069 dminxp 5127 dfrel3 5140 fntpg 5330 fncnv 5340 f0rn0 5470 dff1o4 5530 dffv4g 5573 fvun2 5646 fnreseql 5690 funopdmsn 5764 riota1 5918 riota2df 5920 fnotovb 5988 ovid 6062 ov 6065 ovg 6085 f1od2 6321 frec0g 6483 diffitest 6984 ismkvnex 7257 prarloclem5 7613 renegcl 8333 elznn0 9387 seqf1oglem1 10664 seqf1oglem2 10665 hashunlem 10949 maxclpr 11533 gausslemma2d 15546 lgseisenlem1 15547 2lgslem4 15580 ex-ceil 15662 nninfsellemqall 15952 nninfomni 15956 iswomni0 15990 |
| Copyright terms: Public domain | W3C validator |