| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 |
|
| Ref | Expression |
|---|---|
| eqeq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 |
. 2
| |
| 2 | eqeq1 2212 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: ssequn2 3346 dfss1 3377 disj 3509 disjr 3510 undisj1 3518 undisj2 3519 uneqdifeqim 3546 reusn 3704 rabsneu 3706 eusn 3707 iin0r 4214 opeqsn 4298 unisuc 4461 onsucelsucexmid 4579 sucprcreg 4598 onintexmid 4622 dmopab3 4892 dm0rn0 4896 ssdmres 4982 imadisj 5045 args 5052 intirr 5070 dminxp 5128 dfrel3 5141 fntpg 5331 fncnv 5341 f0rn0 5472 dff1o4 5532 dffv4g 5575 fvun2 5648 fnreseql 5692 funopdmsn 5766 riota1 5920 riota2df 5922 fnotovb 5990 ovid 6064 ov 6067 ovg 6087 f1od2 6323 frec0g 6485 diffitest 6986 ismkvnex 7259 prarloclem5 7615 renegcl 8335 elznn0 9389 seqf1oglem1 10666 seqf1oglem2 10667 hashunlem 10951 maxclpr 11566 gausslemma2d 15579 lgseisenlem1 15580 2lgslem4 15613 edg0iedg0g 15693 ex-ceil 15699 nninfsellemqall 15989 nninfomni 15993 iswomni0 16027 |
| Copyright terms: Public domain | W3C validator |