| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | Unicode version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqeq1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| eqeq1i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1i.1 | 
. 2
 | |
| 2 | eqeq1 2203 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: ssequn2 3336 dfss1 3367 disj 3499 disjr 3500 undisj1 3508 undisj2 3509 uneqdifeqim 3536 reusn 3693 rabsneu 3695 eusn 3696 iin0r 4202 opeqsn 4285 unisuc 4448 onsucelsucexmid 4566 sucprcreg 4585 onintexmid 4609 dmopab3 4879 dm0rn0 4883 ssdmres 4968 imadisj 5031 args 5038 intirr 5056 dminxp 5114 dfrel3 5127 fntpg 5314 fncnv 5324 f0rn0 5452 dff1o4 5512 dffv4g 5555 fvun2 5628 fnreseql 5672 riota1 5896 riota2df 5898 fnotovb 5965 ovid 6039 ov 6042 ovg 6062 f1od2 6293 frec0g 6455 diffitest 6948 ismkvnex 7221 prarloclem5 7567 renegcl 8287 elznn0 9341 seqf1oglem1 10611 seqf1oglem2 10612 hashunlem 10896 maxclpr 11387 gausslemma2d 15310 lgseisenlem1 15311 2lgslem4 15344 ex-ceil 15372 nninfsellemqall 15659 nninfomni 15663 iswomni0 15695 | 
| Copyright terms: Public domain | W3C validator |