Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lble | Unicode version |
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lble |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbreu 8861 | . . . . 5 | |
2 | nfcv 2312 | . . . . . . 7 | |
3 | nfriota1 5816 | . . . . . . . 8 | |
4 | nfcv 2312 | . . . . . . . 8 | |
5 | nfcv 2312 | . . . . . . . 8 | |
6 | 3, 4, 5 | nfbr 4035 | . . . . . . 7 |
7 | 2, 6 | nfralxy 2508 | . . . . . 6 |
8 | eqid 2170 | . . . . . 6 | |
9 | nfra1 2501 | . . . . . . . . 9 | |
10 | nfcv 2312 | . . . . . . . . 9 | |
11 | 9, 10 | nfriota 5818 | . . . . . . . 8 |
12 | 11 | nfeq2 2324 | . . . . . . 7 |
13 | breq1 3992 | . . . . . . 7 | |
14 | 12, 13 | ralbid 2468 | . . . . . 6 |
15 | 7, 8, 14 | riotaprop 5832 | . . . . 5 |
16 | 1, 15 | syl 14 | . . . 4 |
17 | 16 | simprd 113 | . . 3 |
18 | nfcv 2312 | . . . . 5 | |
19 | nfcv 2312 | . . . . 5 | |
20 | 11, 18, 19 | nfbr 4035 | . . . 4 |
21 | breq2 3993 | . . . 4 | |
22 | 20, 21 | rspc 2828 | . . 3 |
23 | 17, 22 | mpan9 279 | . 2 |
24 | 23 | 3impa 1189 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wreu 2450 wss 3121 class class class wbr 3989 crio 5808 cr 7773 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-riota 5809 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: lbinf 8864 lbinfle 8866 |
Copyright terms: Public domain | W3C validator |