| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lble | Unicode version | ||
| Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| lble |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbreu 8972 |
. . . . 5
| |
| 2 | nfcv 2339 |
. . . . . . 7
| |
| 3 | nfriota1 5885 |
. . . . . . . 8
| |
| 4 | nfcv 2339 |
. . . . . . . 8
| |
| 5 | nfcv 2339 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | nfbr 4079 |
. . . . . . 7
|
| 7 | 2, 6 | nfralxy 2535 |
. . . . . 6
|
| 8 | eqid 2196 |
. . . . . 6
| |
| 9 | nfra1 2528 |
. . . . . . . . 9
| |
| 10 | nfcv 2339 |
. . . . . . . . 9
| |
| 11 | 9, 10 | nfriota 5887 |
. . . . . . . 8
|
| 12 | 11 | nfeq2 2351 |
. . . . . . 7
|
| 13 | breq1 4036 |
. . . . . . 7
| |
| 14 | 12, 13 | ralbid 2495 |
. . . . . 6
|
| 15 | 7, 8, 14 | riotaprop 5901 |
. . . . 5
|
| 16 | 1, 15 | syl 14 |
. . . 4
|
| 17 | 16 | simprd 114 |
. . 3
|
| 18 | nfcv 2339 |
. . . . 5
| |
| 19 | nfcv 2339 |
. . . . 5
| |
| 20 | 11, 18, 19 | nfbr 4079 |
. . . 4
|
| 21 | breq2 4037 |
. . . 4
| |
| 22 | 20, 21 | rspc 2862 |
. . 3
|
| 23 | 17, 22 | mpan9 281 |
. 2
|
| 24 | 23 | 3impa 1196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-apti 7994 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-riota 5877 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 |
| This theorem is referenced by: lbinf 8975 lbinfle 8977 |
| Copyright terms: Public domain | W3C validator |