ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lble Unicode version

Theorem lble 8346
Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
lble  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A
)
Distinct variable groups:    x, y, S   
y, A
Allowed substitution hint:    A( x)

Proof of Theorem lble
StepHypRef Expression
1 lbreu 8344 . . . . 5  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
2 nfcv 2225 . . . . . . 7  |-  F/_ x S
3 nfriota1 5578 . . . . . . . 8  |-  F/_ x
( iota_ x  e.  S  A. y  e.  S  x  <_  y )
4 nfcv 2225 . . . . . . . 8  |-  F/_ x  <_
5 nfcv 2225 . . . . . . . 8  |-  F/_ x
y
63, 4, 5nfbr 3866 . . . . . . 7  |-  F/ x
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y
72, 6nfralxy 2410 . . . . . 6  |-  F/ x A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y
8 eqid 2085 . . . . . 6  |-  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )
9 nfra1 2405 . . . . . . . . 9  |-  F/ y A. y  e.  S  x  <_  y
10 nfcv 2225 . . . . . . . . 9  |-  F/_ y S
119, 10nfriota 5580 . . . . . . . 8  |-  F/_ y
( iota_ x  e.  S  A. y  e.  S  x  <_  y )
1211nfeq2 2236 . . . . . . 7  |-  F/ y  x  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )
13 breq1 3825 . . . . . . 7  |-  ( x  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  ->  ( x  <_  y  <->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  <_  y )
)
1412, 13ralbid 2374 . . . . . 6  |-  ( x  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  ->  ( A. y  e.  S  x  <_  y  <->  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y ) )
157, 8, 14riotaprop 5594 . . . . 5  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  ->  ( ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  /\  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y ) )
161, 15syl 14 . . . 4  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  (
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  e.  S  /\  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  y )
)
1716simprd 112 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  y )
18 nfcv 2225 . . . . 5  |-  F/_ y  <_
19 nfcv 2225 . . . . 5  |-  F/_ y A
2011, 18, 19nfbr 3866 . . . 4  |-  F/ y ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A
21 breq2 3826 . . . 4  |-  ( y  =  A  ->  (
( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y  <->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
)  <_  A )
)
2220, 21rspc 2709 . . 3  |-  ( A  e.  S  ->  ( A. y  e.  S  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_ 
y  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A )
)
2317, 22mpan9 275 . 2  |-  ( ( ( S  C_  RR  /\ 
E. x  e.  S  A. y  e.  S  x  <_  y )  /\  A  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A )
24233impa 1136 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 922    = wceq 1287    e. wcel 1436   A.wral 2355   E.wrex 2356   E!wreu 2357    C_ wss 2988   class class class wbr 3822   iota_crio 5570   RRcr 7296    <_ cle 7470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-pre-ltirr 7404  ax-pre-apti 7407
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-xp 4419  df-cnv 4421  df-iota 4948  df-riota 5571  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475
This theorem is referenced by:  lbinf  8347  lbinfle  8349
  Copyright terms: Public domain W3C validator