| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > riota5f | Unicode version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| riota5f.1 |
|
| riota5f.2 |
|
| riota5f.3 |
|
| Ref | Expression |
|---|---|
| riota5f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riota5f.3 |
. . 3
| |
| 2 | 1 | ralrimiva 2579 |
. 2
|
| 3 | riota5f.2 |
. . . 4
| |
| 4 | trud 1389 |
. . . . . . 7
| |
| 5 | reu6i 2964 |
. . . . . . . . 9
| |
| 6 | 5 | adantl 277 |
. . . . . . . 8
|
| 7 | nfv 1551 |
. . . . . . . . . 10
| |
| 8 | nfv 1551 |
. . . . . . . . . . 11
| |
| 9 | nfra1 2537 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | nfan 1588 |
. . . . . . . . . 10
|
| 11 | 7, 10 | nfan 1588 |
. . . . . . . . 9
|
| 12 | nfcvd 2349 |
. . . . . . . . 9
| |
| 13 | nfvd 1552 |
. . . . . . . . 9
| |
| 14 | simprl 529 |
. . . . . . . . 9
| |
| 15 | simpr 110 |
. . . . . . . . . . 11
| |
| 16 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 17 | simplrl 535 |
. . . . . . . . . . . . 13
| |
| 18 | 15, 17 | eqeltrd 2282 |
. . . . . . . . . . . 12
|
| 19 | rsp 2553 |
. . . . . . . . . . . 12
| |
| 20 | 16, 18, 19 | sylc 62 |
. . . . . . . . . . 11
|
| 21 | 15, 20 | mpbird 167 |
. . . . . . . . . 10
|
| 22 | trud 1389 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | 2thd 175 |
. . . . . . . . 9
|
| 24 | 11, 12, 13, 14, 23 | riota2df 5922 |
. . . . . . . 8
|
| 25 | 6, 24 | mpdan 421 |
. . . . . . 7
|
| 26 | 4, 25 | mpbid 147 |
. . . . . 6
|
| 27 | 26 | expr 375 |
. . . . 5
|
| 28 | 27 | ralrimiva 2579 |
. . . 4
|
| 29 | rspsbc 3081 |
. . . 4
| |
| 30 | 3, 28, 29 | sylc 62 |
. . 3
|
| 31 | nfcvd 2349 |
. . . . . . . 8
| |
| 32 | riota5f.1 |
. . . . . . . 8
| |
| 33 | 31, 32 | nfeqd 2363 |
. . . . . . 7
|
| 34 | 7, 33 | nfan1 1587 |
. . . . . 6
|
| 35 | simpr 110 |
. . . . . . . 8
| |
| 36 | 35 | eqeq2d 2217 |
. . . . . . 7
|
| 37 | 36 | bibi2d 232 |
. . . . . 6
|
| 38 | 34, 37 | ralbid 2504 |
. . . . 5
|
| 39 | 35 | eqeq2d 2217 |
. . . . 5
|
| 40 | 38, 39 | imbi12d 234 |
. . . 4
|
| 41 | 3, 40 | sbcied 3035 |
. . 3
|
| 42 | 30, 41 | mpbid 147 |
. 2
|
| 43 | 2, 42 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5233 df-riota 5901 |
| This theorem is referenced by: riota5 5927 |
| Copyright terms: Public domain | W3C validator |