Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riota5f | Unicode version |
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
riota5f.1 | |
riota5f.2 | |
riota5f.3 |
Ref | Expression |
---|---|
riota5f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota5f.3 | . . 3 | |
2 | 1 | ralrimiva 2539 | . 2 |
3 | riota5f.2 | . . . 4 | |
4 | a1tru 1359 | . . . . . . 7 | |
5 | reu6i 2917 | . . . . . . . . 9 | |
6 | 5 | adantl 275 | . . . . . . . 8 |
7 | nfv 1516 | . . . . . . . . . 10 | |
8 | nfv 1516 | . . . . . . . . . . 11 | |
9 | nfra1 2497 | . . . . . . . . . . 11 | |
10 | 8, 9 | nfan 1553 | . . . . . . . . . 10 |
11 | 7, 10 | nfan 1553 | . . . . . . . . 9 |
12 | nfcvd 2309 | . . . . . . . . 9 | |
13 | nfvd 1517 | . . . . . . . . 9 | |
14 | simprl 521 | . . . . . . . . 9 | |
15 | simpr 109 | . . . . . . . . . . 11 | |
16 | simplrr 526 | . . . . . . . . . . . 12 | |
17 | simplrl 525 | . . . . . . . . . . . . 13 | |
18 | 15, 17 | eqeltrd 2243 | . . . . . . . . . . . 12 |
19 | rsp 2513 | . . . . . . . . . . . 12 | |
20 | 16, 18, 19 | sylc 62 | . . . . . . . . . . 11 |
21 | 15, 20 | mpbird 166 | . . . . . . . . . 10 |
22 | a1tru 1359 | . . . . . . . . . 10 | |
23 | 21, 22 | 2thd 174 | . . . . . . . . 9 |
24 | 11, 12, 13, 14, 23 | riota2df 5818 | . . . . . . . 8 |
25 | 6, 24 | mpdan 418 | . . . . . . 7 |
26 | 4, 25 | mpbid 146 | . . . . . 6 |
27 | 26 | expr 373 | . . . . 5 |
28 | 27 | ralrimiva 2539 | . . . 4 |
29 | rspsbc 3033 | . . . 4 | |
30 | 3, 28, 29 | sylc 62 | . . 3 |
31 | nfcvd 2309 | . . . . . . . 8 | |
32 | riota5f.1 | . . . . . . . 8 | |
33 | 31, 32 | nfeqd 2323 | . . . . . . 7 |
34 | 7, 33 | nfan1 1552 | . . . . . 6 |
35 | simpr 109 | . . . . . . . 8 | |
36 | 35 | eqeq2d 2177 | . . . . . . 7 |
37 | 36 | bibi2d 231 | . . . . . 6 |
38 | 34, 37 | ralbid 2464 | . . . . 5 |
39 | 35 | eqeq2d 2177 | . . . . 5 |
40 | 38, 39 | imbi12d 233 | . . . 4 |
41 | 3, 40 | sbcied 2987 | . . 3 |
42 | 30, 41 | mpbid 146 | . 2 |
43 | 2, 42 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wtru 1344 wcel 2136 wnfc 2295 wral 2444 wreu 2446 wsbc 2951 crio 5797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 df-riota 5798 |
This theorem is referenced by: riota5 5823 |
Copyright terms: Public domain | W3C validator |