| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > riota5f | Unicode version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| riota5f.1 | 
 | 
| riota5f.2 | 
 | 
| riota5f.3 | 
 | 
| Ref | Expression | 
|---|---|
| riota5f | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | riota5f.3 | 
. . 3
 | |
| 2 | 1 | ralrimiva 2570 | 
. 2
 | 
| 3 | riota5f.2 | 
. . . 4
 | |
| 4 | trud 1380 | 
. . . . . . 7
 | |
| 5 | reu6i 2955 | 
. . . . . . . . 9
 | |
| 6 | 5 | adantl 277 | 
. . . . . . . 8
 | 
| 7 | nfv 1542 | 
. . . . . . . . . 10
 | |
| 8 | nfv 1542 | 
. . . . . . . . . . 11
 | |
| 9 | nfra1 2528 | 
. . . . . . . . . . 11
 | |
| 10 | 8, 9 | nfan 1579 | 
. . . . . . . . . 10
 | 
| 11 | 7, 10 | nfan 1579 | 
. . . . . . . . 9
 | 
| 12 | nfcvd 2340 | 
. . . . . . . . 9
 | |
| 13 | nfvd 1543 | 
. . . . . . . . 9
 | |
| 14 | simprl 529 | 
. . . . . . . . 9
 | |
| 15 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 16 | simplrr 536 | 
. . . . . . . . . . . 12
 | |
| 17 | simplrl 535 | 
. . . . . . . . . . . . 13
 | |
| 18 | 15, 17 | eqeltrd 2273 | 
. . . . . . . . . . . 12
 | 
| 19 | rsp 2544 | 
. . . . . . . . . . . 12
 | |
| 20 | 16, 18, 19 | sylc 62 | 
. . . . . . . . . . 11
 | 
| 21 | 15, 20 | mpbird 167 | 
. . . . . . . . . 10
 | 
| 22 | trud 1380 | 
. . . . . . . . . 10
 | |
| 23 | 21, 22 | 2thd 175 | 
. . . . . . . . 9
 | 
| 24 | 11, 12, 13, 14, 23 | riota2df 5898 | 
. . . . . . . 8
 | 
| 25 | 6, 24 | mpdan 421 | 
. . . . . . 7
 | 
| 26 | 4, 25 | mpbid 147 | 
. . . . . 6
 | 
| 27 | 26 | expr 375 | 
. . . . 5
 | 
| 28 | 27 | ralrimiva 2570 | 
. . . 4
 | 
| 29 | rspsbc 3072 | 
. . . 4
 | |
| 30 | 3, 28, 29 | sylc 62 | 
. . 3
 | 
| 31 | nfcvd 2340 | 
. . . . . . . 8
 | |
| 32 | riota5f.1 | 
. . . . . . . 8
 | |
| 33 | 31, 32 | nfeqd 2354 | 
. . . . . . 7
 | 
| 34 | 7, 33 | nfan1 1578 | 
. . . . . 6
 | 
| 35 | simpr 110 | 
. . . . . . . 8
 | |
| 36 | 35 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 37 | 36 | bibi2d 232 | 
. . . . . 6
 | 
| 38 | 34, 37 | ralbid 2495 | 
. . . . 5
 | 
| 39 | 35 | eqeq2d 2208 | 
. . . . 5
 | 
| 40 | 38, 39 | imbi12d 234 | 
. . . 4
 | 
| 41 | 3, 40 | sbcied 3026 | 
. . 3
 | 
| 42 | 30, 41 | mpbid 147 | 
. 2
 | 
| 43 | 2, 42 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 df-riota 5877 | 
| This theorem is referenced by: riota5 5903 | 
| Copyright terms: Public domain | W3C validator |