ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbidv2 Unicode version

Theorem ralbidv2 2459
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997.)
Hypothesis
Ref Expression
ralbidv2.1  |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch ) ) )
Assertion
Ref Expression
ralbidv2  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)    B( x)

Proof of Theorem ralbidv2
StepHypRef Expression
1 ralbidv2.1 . . 3  |-  ( ph  ->  ( ( x  e.  A  ->  ps )  <->  ( x  e.  B  ->  ch ) ) )
21albidv 1804 . 2  |-  ( ph  ->  ( A. x ( x  e.  A  ->  ps )  <->  A. x ( x  e.  B  ->  ch ) ) )
3 df-ral 2440 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
4 df-ral 2440 . 2  |-  ( A. x  e.  B  ch  <->  A. x ( x  e.  B  ->  ch )
)
52, 3, 43bitr4g 222 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1333    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-17 1506
This theorem depends on definitions:  df-bi 116  df-ral 2440
This theorem is referenced by:  ralss  3194  dfsmo2  6236  raluz  9494  isprm3  12010  metcnp  12982  sscoll2  13634
  Copyright terms: Public domain W3C validator