ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz Unicode version

Theorem raluz 9643
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz  |-  ( M  e.  ZZ  ->  ( A. n  e.  ( ZZ>=
`  M ) ph  <->  A. n  e.  ZZ  ( M  <_  n  ->  ph )
) )
Distinct variable group:    n, M
Allowed substitution hint:    ph( n)

Proof of Theorem raluz
StepHypRef Expression
1 eluz1 9596 . . . 4  |-  ( M  e.  ZZ  ->  (
n  e.  ( ZZ>= `  M )  <->  ( n  e.  ZZ  /\  M  <_  n ) ) )
21imbi1d 231 . . 3  |-  ( M  e.  ZZ  ->  (
( n  e.  (
ZZ>= `  M )  ->  ph )  <->  ( ( n  e.  ZZ  /\  M  <_  n )  ->  ph )
) )
3 impexp 263 . . 3  |-  ( ( ( n  e.  ZZ  /\  M  <_  n )  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )
42, 3bitrdi 196 . 2  |-  ( M  e.  ZZ  ->  (
( n  e.  (
ZZ>= `  M )  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
54ralbidv2 2496 1  |-  ( M  e.  ZZ  ->  ( A. n  e.  ( ZZ>=
`  M ) ph  <->  A. n  e.  ZZ  ( M  <_  n  ->  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472   class class class wbr 4029   ` cfv 5254    <_ cle 8055   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-cnex 7963  ax-resscn 7964
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-neg 8193  df-z 9318  df-uz 9593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator