ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralss Unicode version

Theorem ralss 3085
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
ralss  |-  ( A 
C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  ->  ph ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ralss
StepHypRef Expression
1 ssel 3017 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21pm4.71rd 386 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  B  /\  x  e.  A ) ) )
32imbi1d 229 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ph )  <->  ( (
x  e.  B  /\  x  e.  A )  ->  ph ) ) )
4 impexp 259 . . 3  |-  ( ( ( x  e.  B  /\  x  e.  A
)  ->  ph )  <->  ( x  e.  B  ->  ( x  e.  A  ->  ph )
) )
53, 4syl6bb 194 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ph )  <->  ( x  e.  B  ->  ( x  e.  A  ->  ph )
) ) )
65ralbidv2 2382 1  |-  ( A 
C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   A.wral 2359    C_ wss 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-ral 2364  df-in 3003  df-ss 3010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator