Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfsmo2 | Unicode version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
Ref | Expression |
---|---|
dfsmo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 6254 | . 2 | |
2 | ralcom 2629 | . . . . . 6 | |
3 | impexp 261 | . . . . . . . . 9 | |
4 | simpr 109 | . . . . . . . . . . 11 | |
5 | ordtr1 4366 | . . . . . . . . . . . . . . 15 | |
6 | 5 | 3impib 1191 | . . . . . . . . . . . . . 14 |
7 | 6 | 3com23 1199 | . . . . . . . . . . . . 13 |
8 | simp3 989 | . . . . . . . . . . . . 13 | |
9 | 7, 8 | jca 304 | . . . . . . . . . . . 12 |
10 | 9 | 3expia 1195 | . . . . . . . . . . 11 |
11 | 4, 10 | impbid2 142 | . . . . . . . . . 10 |
12 | 11 | imbi1d 230 | . . . . . . . . 9 |
13 | 3, 12 | bitr3id 193 | . . . . . . . 8 |
14 | 13 | ralbidv2 2468 | . . . . . . 7 |
15 | 14 | ralbidva 2462 | . . . . . 6 |
16 | 2, 15 | syl5bb 191 | . . . . 5 |
17 | 16 | pm5.32i 450 | . . . 4 |
18 | 17 | anbi2i 453 | . . 3 |
19 | 3anass 972 | . . 3 | |
20 | 3anass 972 | . . 3 | |
21 | 18, 19, 20 | 3bitr4i 211 | . 2 |
22 | 1, 21 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wcel 2136 wral 2444 word 4340 con0 4341 cdm 4604 wf 5184 cfv 5188 wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-smo 6254 |
This theorem is referenced by: issmo2 6257 smores2 6262 smofvon2dm 6264 |
Copyright terms: Public domain | W3C validator |