Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfsmo2 | Unicode version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
Ref | Expression |
---|---|
dfsmo2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo 6227 | . 2 | |
2 | ralcom 2620 | . . . . . 6 | |
3 | impexp 261 | . . . . . . . . 9 | |
4 | simpr 109 | . . . . . . . . . . 11 | |
5 | ordtr1 4347 | . . . . . . . . . . . . . . 15 | |
6 | 5 | 3impib 1183 | . . . . . . . . . . . . . 14 |
7 | 6 | 3com23 1191 | . . . . . . . . . . . . 13 |
8 | simp3 984 | . . . . . . . . . . . . 13 | |
9 | 7, 8 | jca 304 | . . . . . . . . . . . 12 |
10 | 9 | 3expia 1187 | . . . . . . . . . . 11 |
11 | 4, 10 | impbid2 142 | . . . . . . . . . 10 |
12 | 11 | imbi1d 230 | . . . . . . . . 9 |
13 | 3, 12 | bitr3id 193 | . . . . . . . 8 |
14 | 13 | ralbidv2 2459 | . . . . . . 7 |
15 | 14 | ralbidva 2453 | . . . . . 6 |
16 | 2, 15 | syl5bb 191 | . . . . 5 |
17 | 16 | pm5.32i 450 | . . . 4 |
18 | 17 | anbi2i 453 | . . 3 |
19 | 3anass 967 | . . 3 | |
20 | 3anass 967 | . . 3 | |
21 | 18, 19, 20 | 3bitr4i 211 | . 2 |
22 | 1, 21 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wcel 2128 wral 2435 word 4321 con0 4322 cdm 4583 wf 5163 cfv 5167 wsmo 6226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-tr 4063 df-iord 4325 df-smo 6227 |
This theorem is referenced by: issmo2 6230 smores2 6235 smofvon2dm 6237 |
Copyright terms: Public domain | W3C validator |