| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsmo2 | Unicode version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| Ref | Expression |
|---|---|
| dfsmo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 6371 |
. 2
| |
| 2 | ralcom 2668 |
. . . . . 6
| |
| 3 | impexp 263 |
. . . . . . . . 9
| |
| 4 | simpr 110 |
. . . . . . . . . . 11
| |
| 5 | ordtr1 4434 |
. . . . . . . . . . . . . . 15
| |
| 6 | 5 | 3impib 1203 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | 3com23 1211 |
. . . . . . . . . . . . 13
|
| 8 | simp3 1001 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | jca 306 |
. . . . . . . . . . . 12
|
| 10 | 9 | 3expia 1207 |
. . . . . . . . . . 11
|
| 11 | 4, 10 | impbid2 143 |
. . . . . . . . . 10
|
| 12 | 11 | imbi1d 231 |
. . . . . . . . 9
|
| 13 | 3, 12 | bitr3id 194 |
. . . . . . . 8
|
| 14 | 13 | ralbidv2 2507 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2501 |
. . . . . 6
|
| 16 | 2, 15 | bitrid 192 |
. . . . 5
|
| 17 | 16 | pm5.32i 454 |
. . . 4
|
| 18 | 17 | anbi2i 457 |
. . 3
|
| 19 | 3anass 984 |
. . 3
| |
| 20 | 3anass 984 |
. . 3
| |
| 21 | 18, 19, 20 | 3bitr4i 212 |
. 2
|
| 22 | 1, 21 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-tr 4142 df-iord 4412 df-smo 6371 |
| This theorem is referenced by: issmo2 6374 smores2 6379 smofvon2dm 6381 |
| Copyright terms: Public domain | W3C validator |