ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsmo2 Unicode version

Theorem dfsmo2 6150
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
dfsmo2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
Distinct variable group:    x, F, y

Proof of Theorem dfsmo2
StepHypRef Expression
1 df-smo 6149 . 2  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) ) ) )
2 ralcom 2569 . . . . . 6  |-  ( A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) )  <->  A. x  e.  dom  F A. y  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )
3 impexp 261 . . . . . . . . 9  |-  ( ( ( y  e.  dom  F  /\  y  e.  x
)  ->  ( F `  y )  e.  ( F `  x ) )  <->  ( y  e. 
dom  F  ->  ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) ) ) )
4 simpr 109 . . . . . . . . . . 11  |-  ( ( y  e.  dom  F  /\  y  e.  x
)  ->  y  e.  x )
5 ordtr1 4278 . . . . . . . . . . . . . . 15  |-  ( Ord 
dom  F  ->  ( ( y  e.  x  /\  x  e.  dom  F )  ->  y  e.  dom  F ) )
653impib 1162 . . . . . . . . . . . . . 14  |-  ( ( Ord  dom  F  /\  y  e.  x  /\  x  e.  dom  F )  ->  y  e.  dom  F )
763com23 1170 . . . . . . . . . . . . 13  |-  ( ( Ord  dom  F  /\  x  e.  dom  F  /\  y  e.  x )  ->  y  e.  dom  F
)
8 simp3 966 . . . . . . . . . . . . 13  |-  ( ( Ord  dom  F  /\  x  e.  dom  F  /\  y  e.  x )  ->  y  e.  x )
97, 8jca 302 . . . . . . . . . . . 12  |-  ( ( Ord  dom  F  /\  x  e.  dom  F  /\  y  e.  x )  ->  ( y  e.  dom  F  /\  y  e.  x
) )
1093expia 1166 . . . . . . . . . . 11  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( y  e.  x  ->  ( y  e.  dom  F  /\  y  e.  x ) ) )
114, 10impbid2 142 . . . . . . . . . 10  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( ( y  e.  dom  F  /\  y  e.  x )  <->  y  e.  x ) )
1211imbi1d 230 . . . . . . . . 9  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( ( ( y  e.  dom  F  /\  y  e.  x
)  ->  ( F `  y )  e.  ( F `  x ) )  <->  ( y  e.  x  ->  ( F `  y )  e.  ( F `  x ) ) ) )
133, 12syl5bbr 193 . . . . . . . 8  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( ( y  e.  dom  F  -> 
( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( y  e.  x  ->  ( F `  y )  e.  ( F `  x ) ) ) )
1413ralbidv2 2414 . . . . . . 7  |-  ( ( Ord  dom  F  /\  x  e.  dom  F )  ->  ( A. y  e.  dom  F ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) )  <->  A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1514ralbidva 2408 . . . . . 6  |-  ( Ord 
dom  F  ->  ( A. x  e.  dom  F A. y  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) )  <->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
162, 15syl5bb 191 . . . . 5  |-  ( Ord 
dom  F  ->  ( A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) )  <->  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1716pm5.32i 447 . . . 4  |-  ( ( Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( Ord  dom  F  /\  A. x  e. 
dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
1817anbi2i 450 . . 3  |-  ( ( F : dom  F --> On  /\  ( Ord  dom  F  /\  A. y  e. 
dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y )  e.  ( F `  x
) ) ) )  <-> 
( F : dom  F --> On  /\  ( Ord 
dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) ) )
19 3anass 949 . . 3  |-  ( ( F : dom  F --> On  /\  Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( F : dom  F --> On  /\  ( Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  -> 
( F `  y
)  e.  ( F `
 x ) ) ) ) )
20 3anass 949 . . 3  |-  ( ( F : dom  F --> On  /\  Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) )  <->  ( F : dom  F --> On  /\  ( Ord  dom  F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) ) )
2118, 19, 203bitr4i 211 . 2  |-  ( ( F : dom  F --> On  /\  Ord  dom  F  /\  A. y  e.  dom  F A. x  e.  dom  F ( y  e.  x  ->  ( F `  y
)  e.  ( F `
 x ) ) )  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
221, 21bitri 183 1  |-  ( Smo 
F  <->  ( F : dom  F --> On  /\  Ord  dom 
F  /\  A. x  e.  dom  F A. y  e.  x  ( F `  y )  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    e. wcel 1463   A.wral 2391   Ord word 4252   Oncon0 4253   dom cdm 4507   -->wf 5087   ` cfv 5091   Smo wsmo 6148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660  df-in 3045  df-ss 3052  df-uni 3705  df-tr 3995  df-iord 4256  df-smo 6149
This theorem is referenced by:  issmo2  6152  smores2  6157  smofvon2dm  6159
  Copyright terms: Public domain W3C validator