ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnp Unicode version

Theorem metcnp 13679
Description: Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Distinct variable groups:    y, w, z, F    w, J, y, z    w, K, y, z    w, X, y, z    w, Y, y, z    w, C, y, z    w, D, y, z    w, P, y, z

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3  |-  J  =  ( MetOpen `  C )
2 metcn.4 . . 3  |-  K  =  ( MetOpen `  D )
31, 2metcnp3 13678 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4 ffun 5364 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
54ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  Fun  F )
6 simpll1 1036 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  C  e.  ( *Met `  X
) )
7 simpll3 1038 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  P  e.  X )
8 rpxr 9648 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  e. 
RR* )
98ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  z  e.  RR* )
10 blssm 13588 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z ) 
C_  X )
116, 7, 9, 10syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  X
)
12 fdm 5367 . . . . . . . . . 10  |-  ( F : X --> Y  ->  dom  F  =  X )
1312ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  dom  F  =  X )
1411, 13sseqtrrd 3194 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( P
( ball `  C )
z )  C_  dom  F )
15 funimass4 5562 . . . . . . . 8  |-  ( ( Fun  F  /\  ( P ( ball `  C
) z )  C_  dom  F )  ->  (
( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. w  e.  ( P ( ball `  C ) z ) ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )
165, 14, 15syl2anc 411 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  ( P ( ball `  C
) z ) ( F `  w )  e.  ( ( F `
 P ) (
ball `  D )
y ) ) )
17 elbl 13558 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( w  e.  ( P ( ball `  C
) z )  <->  ( w  e.  X  /\  ( P C w )  < 
z ) ) )
186, 7, 9, 17syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( w  e.  ( P ( ball `  C ) z )  <-> 
( w  e.  X  /\  ( P C w )  <  z ) ) )
1918imbi1d 231 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( w  e.  X  /\  ( P C w )  < 
z )  ->  ( F `  w )  e.  ( ( F `  P ) ( ball `  D ) y ) ) ) )
20 impexp 263 . . . . . . . . . 10  |-  ( ( ( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) ) )
21 simpl2 1001 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( *Met `  Y ) )
2221ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  D  e.  ( *Met `  Y ) )
23 simplrl 535 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR+ )
2423rpxrd 9684 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  y  e.  RR* )
25 simpllr 534 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  F : X --> Y )
267adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  P  e.  X )
2725, 26ffvelcdmd 5648 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  P )  e.  Y )
28 simplr 528 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  F : X
--> Y )
2928ffvelcdmda 5647 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  ( F `  w )  e.  Y )
30 elbl2 13560 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( *Met `  Y
)  /\  y  e.  RR* )  /\  ( ( F `  P )  e.  Y  /\  ( F `  w )  e.  Y ) )  -> 
( ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3122, 24, 27, 29, 30syl22anc 1239 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y )  <->  ( ( F `  P ) D ( F `  w ) )  < 
y ) )
3231imbi2d 230 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  /\  w  e.  X )  ->  (
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3332pm5.74da 443 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  X  -> 
( ( P C w )  <  z  ->  ( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) ) )  <->  ( w  e.  X  ->  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
3420, 33bitrid 192 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
( w  e.  X  /\  ( P C w )  <  z )  ->  ( F `  w )  e.  ( ( F `  P
) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3519, 34bitrd 188 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( (
w  e.  ( P ( ball `  C
) z )  -> 
( F `  w
)  e.  ( ( F `  P ) ( ball `  D
) y ) )  <-> 
( w  e.  X  ->  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
3635ralbidv2 2479 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( A. w  e.  ( P
( ball `  C )
z ) ( F `
 w )  e.  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3716, 36bitrd 188 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  z  e.  RR+ )
)  ->  ( ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y )  <->  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
3837anassrs 400 . . . . 5  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  <->  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
3938rexbidva 2474 . . . 4  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) )
4039ralbidva 2473 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) )
4140pm5.32da 452 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
423, 41bitrd 188 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  < 
z  ->  ( ( F `  P ) D ( F `  w ) )  < 
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3129   class class class wbr 4000   dom cdm 4623   "cima 4626   Fun wfun 5206   -->wf 5208   ` cfv 5212  (class class class)co 5869   RR*cxr 7981    < clt 7982   RR+crp 9640   *Metcxmet 13147   ballcbl 13149   MetOpencmopn 13152    CnP ccnp 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-cnp 13356
This theorem is referenced by:  metcnp2  13680  metcn  13681  metcnpi  13682  txmetcnp  13685  metcnpd  13687
  Copyright terms: Public domain W3C validator