ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxfr Unicode version

Theorem ralxfr 4316
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1  |-  ( y  e.  C  ->  A  e.  B )
ralxfr.2  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
ralxfr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralxfr  |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
Distinct variable groups:    ps, x    ph, y    x, A    x, y, B   
x, C
Allowed substitution hints:    ph( x)    ps( y)    A( y)    C( y)

Proof of Theorem ralxfr
StepHypRef Expression
1 ralxfr.1 . . . 4  |-  ( y  e.  C  ->  A  e.  B )
21adantl 272 . . 3  |-  ( ( T.  /\  y  e.  C )  ->  A  e.  B )
3 ralxfr.2 . . . 4  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
43adantl 272 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
5 ralxfr.3 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65adantl 272 . . 3  |-  ( ( T.  /\  x  =  A )  ->  ( ph 
<->  ps ) )
72, 4, 6ralxfrd 4312 . 2  |-  ( T. 
->  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
)
87mptru 1305 1  |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1296   T. wtru 1297    e. wcel 1445   A.wral 2370   E.wrex 2371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator