ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxfr Unicode version

Theorem ralxfr 4534
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1  |-  ( y  e.  C  ->  A  e.  B )
ralxfr.2  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
ralxfr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralxfr  |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
Distinct variable groups:    ps, x    ph, y    x, A    x, y, B   
x, C
Allowed substitution hints:    ph( x)    ps( y)    A( y)    C( y)

Proof of Theorem ralxfr
StepHypRef Expression
1 ralxfr.1 . . . 4  |-  ( y  e.  C  ->  A  e.  B )
21adantl 277 . . 3  |-  ( ( T.  /\  y  e.  C )  ->  A  e.  B )
3 ralxfr.2 . . . 4  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
43adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
5 ralxfr.3 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65adantl 277 . . 3  |-  ( ( T.  /\  x  =  A )  ->  ( ph 
<->  ps ) )
72, 4, 6ralxfrd 4530 . 2  |-  ( T. 
->  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
)
87mptru 1384 1  |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1375   T. wtru 1376    e. wcel 2180   A.wral 2488   E.wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator