| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralxfr | GIF version | ||
| Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | 
| ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| ralxfr | ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralxfr.1 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | 
| 3 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| 5 | ralxfr.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) | 
| 7 | 2, 4, 6 | ralxfrd 4497 | . 2 ⊢ (⊤ → (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓)) | 
| 8 | 7 | mptru 1373 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |