ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralxfr GIF version

Theorem ralxfr 4534
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1 (𝑦𝐶𝐴𝐵)
ralxfr.2 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfr.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralxfr (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem ralxfr
StepHypRef Expression
1 ralxfr.1 . . . 4 (𝑦𝐶𝐴𝐵)
21adantl 277 . . 3 ((⊤ ∧ 𝑦𝐶) → 𝐴𝐵)
3 ralxfr.2 . . . 4 (𝑥𝐵 → ∃𝑦𝐶 𝑥 = 𝐴)
43adantl 277 . . 3 ((⊤ ∧ 𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
5 ralxfr.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65adantl 277 . . 3 ((⊤ ∧ 𝑥 = 𝐴) → (𝜑𝜓))
72, 4, 6ralxfrd 4530 . 2 (⊤ → (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓))
87mptru 1384 1 (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐶 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wtru 1376  wcel 2180  wral 2488  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator