| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxfrd | Unicode version | ||
| Description: Transfer universal
quantification from a variable |
| Ref | Expression |
|---|---|
| ralxfrd.1 |
|
| ralxfrd.2 |
|
| ralxfrd.3 |
|
| Ref | Expression |
|---|---|
| ralxfrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfrd.1 |
. . . 4
| |
| 2 | ralxfrd.3 |
. . . . 5
| |
| 3 | 2 | adantlr 477 |
. . . 4
|
| 4 | 1, 3 | rspcdv 2887 |
. . 3
|
| 5 | 4 | ralrimdva 2588 |
. 2
|
| 6 | ralxfrd.2 |
. . . 4
| |
| 7 | r19.29 2645 |
. . . . 5
| |
| 8 | 2 | biimprd 158 |
. . . . . . . . 9
|
| 9 | 8 | expimpd 363 |
. . . . . . . 8
|
| 10 | 9 | ancomsd 269 |
. . . . . . 7
|
| 11 | 10 | ad2antrr 488 |
. . . . . 6
|
| 12 | 11 | rexlimdva 2625 |
. . . . 5
|
| 13 | 7, 12 | syl5 32 |
. . . 4
|
| 14 | 6, 13 | mpan2d 428 |
. . 3
|
| 15 | 14 | ralrimdva 2588 |
. 2
|
| 16 | 5, 15 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 |
| This theorem is referenced by: ralxfr2d 4529 ralxfr 4531 |
| Copyright terms: Public domain | W3C validator |