| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralxfrd | Unicode version | ||
| Description: Transfer universal
quantification from a variable  | 
| Ref | Expression | 
|---|---|
| ralxfrd.1 | 
 | 
| ralxfrd.2 | 
 | 
| ralxfrd.3 | 
 | 
| Ref | Expression | 
|---|---|
| ralxfrd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralxfrd.1 | 
. . . 4
 | |
| 2 | ralxfrd.3 | 
. . . . 5
 | |
| 3 | 2 | adantlr 477 | 
. . . 4
 | 
| 4 | 1, 3 | rspcdv 2871 | 
. . 3
 | 
| 5 | 4 | ralrimdva 2577 | 
. 2
 | 
| 6 | ralxfrd.2 | 
. . . 4
 | |
| 7 | r19.29 2634 | 
. . . . 5
 | |
| 8 | 2 | biimprd 158 | 
. . . . . . . . 9
 | 
| 9 | 8 | expimpd 363 | 
. . . . . . . 8
 | 
| 10 | 9 | ancomsd 269 | 
. . . . . . 7
 | 
| 11 | 10 | ad2antrr 488 | 
. . . . . 6
 | 
| 12 | 11 | rexlimdva 2614 | 
. . . . 5
 | 
| 13 | 7, 12 | syl5 32 | 
. . . 4
 | 
| 14 | 6, 13 | mpan2d 428 | 
. . 3
 | 
| 15 | 14 | ralrimdva 2577 | 
. 2
 | 
| 16 | 5, 15 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 | 
| This theorem is referenced by: ralxfr2d 4499 ralxfr 4501 | 
| Copyright terms: Public domain | W3C validator |