ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resex Unicode version

Theorem resex 4925
Description: The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
resex.1  |-  A  e. 
_V
Assertion
Ref Expression
resex  |-  ( A  |`  B )  e.  _V

Proof of Theorem resex
StepHypRef Expression
1 resex.1 . 2  |-  A  e. 
_V
2 resexg 4924 . 2  |-  ( A  e.  _V  ->  ( A  |`  B )  e. 
_V )
31, 2ax-mp 5 1  |-  ( A  |`  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-res 4616
This theorem is referenced by:  sbthlemi10  6931  finomni  7104  ctinf  12363
  Copyright terms: Public domain W3C validator