ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resex Unicode version

Theorem resex 4987
Description: The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
resex.1  |-  A  e. 
_V
Assertion
Ref Expression
resex  |-  ( A  |`  B )  e.  _V

Proof of Theorem resex
StepHypRef Expression
1 resex.1 . 2  |-  A  e. 
_V
2 resexg 4986 . 2  |-  ( A  e.  _V  ->  ( A  |`  B )  e. 
_V )
31, 2ax-mp 5 1  |-  ( A  |`  B )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-res 4675
This theorem is referenced by:  sbthlemi10  7032  finomni  7206  ctinf  12647  znval  14192
  Copyright terms: Public domain W3C validator