ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 Unicode version

Theorem sbthlemi10 7094
Description: Lemma for isbth 7095. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
sbthlem.4  |-  B  e. 
_V
Assertion
Ref Expression
sbthlemi10  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Distinct variable groups:    x, A    x, B    x, D    x, f,
g    x, H    f, g, A    B, f, g
Allowed substitution hints:    D( f, g)    H( f, g)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6  |-  B  e. 
_V
21brdom 6862 . . . . 5  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 sbthlem.1 . . . . . 6  |-  A  e. 
_V
43brdom 6862 . . . . 5  |-  ( B  ~<_  A  <->  E. g  g : B -1-1-> A )
52, 4anbi12i 460 . . . 4  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  ( E. f  f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
6 eeanv 1961 . . . 4  |-  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( E. f 
f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
75, 6bitr4i 187 . . 3  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A ) )
8 sbthlem.3 . . . . . . 7  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
9 vex 2779 . . . . . . . . 9  |-  f  e. 
_V
109resex 5019 . . . . . . . 8  |-  ( f  |`  U. D )  e. 
_V
11 vex 2779 . . . . . . . . . 10  |-  g  e. 
_V
1211cnvex 5240 . . . . . . . . 9  |-  `' g  e.  _V
1312resex 5019 . . . . . . . 8  |-  ( `' g  |`  ( A  \ 
U. D ) )  e.  _V
1410, 13unex 4506 . . . . . . 7  |-  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D ) ) )  e.  _V
158, 14eqeltri 2280 . . . . . 6  |-  H  e. 
_V
16 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
173, 16, 8sbthlemi9 7093 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
18 f1oen3g 6868 . . . . . 6  |-  ( ( H  e.  _V  /\  H : A -1-1-onto-> B )  ->  A  ~~  B )
1915, 17, 18sylancr 414 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B )
20193expib 1209 . . . 4  |-  (EXMID  ->  (
( f : A -1-1-> B  /\  g : B -1-1-> A )  ->  A  ~~  B ) )
2120exlimdvv 1922 . . 3  |-  (EXMID  ->  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B ) )
227, 21biimtrid 152 . 2  |-  (EXMID  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2322imp 124 1  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   _Vcvv 2776    \ cdif 3171    u. cun 3172    C_ wss 3174   U.cuni 3864   class class class wbr 4059  EXMIDwem 4254   `'ccnv 4692    |` cres 4695   "cima 4696   -1-1->wf1 5287   -1-1-onto->wf1o 5289    ~~ cen 6848    ~<_ cdom 6849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-exmid 4255  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-en 6851  df-dom 6852
This theorem is referenced by:  isbth  7095
  Copyright terms: Public domain W3C validator