ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 Unicode version

Theorem sbthlemi10 7027
Description: Lemma for isbth 7028. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
sbthlem.4  |-  B  e. 
_V
Assertion
Ref Expression
sbthlemi10  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Distinct variable groups:    x, A    x, B    x, D    x, f,
g    x, H    f, g, A    B, f, g
Allowed substitution hints:    D( f, g)    H( f, g)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6  |-  B  e. 
_V
21brdom 6806 . . . . 5  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 sbthlem.1 . . . . . 6  |-  A  e. 
_V
43brdom 6806 . . . . 5  |-  ( B  ~<_  A  <->  E. g  g : B -1-1-> A )
52, 4anbi12i 460 . . . 4  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  ( E. f  f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
6 eeanv 1948 . . . 4  |-  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( E. f 
f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
75, 6bitr4i 187 . . 3  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A ) )
8 sbthlem.3 . . . . . . 7  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
9 vex 2763 . . . . . . . . 9  |-  f  e. 
_V
109resex 4984 . . . . . . . 8  |-  ( f  |`  U. D )  e. 
_V
11 vex 2763 . . . . . . . . . 10  |-  g  e. 
_V
1211cnvex 5205 . . . . . . . . 9  |-  `' g  e.  _V
1312resex 4984 . . . . . . . 8  |-  ( `' g  |`  ( A  \ 
U. D ) )  e.  _V
1410, 13unex 4473 . . . . . . 7  |-  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D ) ) )  e.  _V
158, 14eqeltri 2266 . . . . . 6  |-  H  e. 
_V
16 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
173, 16, 8sbthlemi9 7026 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
18 f1oen3g 6810 . . . . . 6  |-  ( ( H  e.  _V  /\  H : A -1-1-onto-> B )  ->  A  ~~  B )
1915, 17, 18sylancr 414 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B )
20193expib 1208 . . . 4  |-  (EXMID  ->  (
( f : A -1-1-> B  /\  g : B -1-1-> A )  ->  A  ~~  B ) )
2120exlimdvv 1909 . . 3  |-  (EXMID  ->  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B ) )
227, 21biimtrid 152 . 2  |-  (EXMID  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2322imp 124 1  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   _Vcvv 2760    \ cdif 3151    u. cun 3152    C_ wss 3154   U.cuni 3836   class class class wbr 4030  EXMIDwem 4224   `'ccnv 4659    |` cres 4662   "cima 4663   -1-1->wf1 5252   -1-1-onto->wf1o 5254    ~~ cen 6794    ~<_ cdom 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-exmid 4225  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-en 6797  df-dom 6798
This theorem is referenced by:  isbth  7028
  Copyright terms: Public domain W3C validator