Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlemi10 | Unicode version |
Description: Lemma for isbth 6940. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 | |
sbthlem.3 | |
sbthlem.4 |
Ref | Expression |
---|---|
sbthlemi10 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.4 | . . . . . 6 | |
2 | 1 | brdom 6724 | . . . . 5 |
3 | sbthlem.1 | . . . . . 6 | |
4 | 3 | brdom 6724 | . . . . 5 |
5 | 2, 4 | anbi12i 457 | . . . 4 |
6 | eeanv 1925 | . . . 4 | |
7 | 5, 6 | bitr4i 186 | . . 3 |
8 | sbthlem.3 | . . . . . . 7 | |
9 | vex 2733 | . . . . . . . . 9 | |
10 | 9 | resex 4930 | . . . . . . . 8 |
11 | vex 2733 | . . . . . . . . . 10 | |
12 | 11 | cnvex 5147 | . . . . . . . . 9 |
13 | 12 | resex 4930 | . . . . . . . 8 |
14 | 10, 13 | unex 4424 | . . . . . . 7 |
15 | 8, 14 | eqeltri 2243 | . . . . . 6 |
16 | sbthlem.2 | . . . . . . 7 | |
17 | 3, 16, 8 | sbthlemi9 6938 | . . . . . 6 EXMID |
18 | f1oen3g 6728 | . . . . . 6 | |
19 | 15, 17, 18 | sylancr 412 | . . . . 5 EXMID |
20 | 19 | 3expib 1201 | . . . 4 EXMID |
21 | 20 | exlimdvv 1890 | . . 3 EXMID |
22 | 7, 21 | syl5bi 151 | . 2 EXMID |
23 | 22 | imp 123 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wex 1485 wcel 2141 cab 2156 cvv 2730 cdif 3118 cun 3119 wss 3121 cuni 3794 class class class wbr 3987 EXMIDwem 4178 ccnv 4608 cres 4611 cima 4612 wf1 5193 wf1o 5195 cen 6712 cdom 6713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-exmid 4179 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-en 6715 df-dom 6716 |
This theorem is referenced by: isbth 6940 |
Copyright terms: Public domain | W3C validator |