ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 Unicode version

Theorem sbthlemi10 6931
Description: Lemma for isbth 6932. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
sbthlem.4  |-  B  e. 
_V
Assertion
Ref Expression
sbthlemi10  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Distinct variable groups:    x, A    x, B    x, D    x, f,
g    x, H    f, g, A    B, f, g
Allowed substitution hints:    D( f, g)    H( f, g)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6  |-  B  e. 
_V
21brdom 6716 . . . . 5  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 sbthlem.1 . . . . . 6  |-  A  e. 
_V
43brdom 6716 . . . . 5  |-  ( B  ~<_  A  <->  E. g  g : B -1-1-> A )
52, 4anbi12i 456 . . . 4  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  ( E. f  f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
6 eeanv 1920 . . . 4  |-  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( E. f 
f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
75, 6bitr4i 186 . . 3  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A ) )
8 sbthlem.3 . . . . . . 7  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
9 vex 2729 . . . . . . . . 9  |-  f  e. 
_V
109resex 4925 . . . . . . . 8  |-  ( f  |`  U. D )  e. 
_V
11 vex 2729 . . . . . . . . . 10  |-  g  e. 
_V
1211cnvex 5142 . . . . . . . . 9  |-  `' g  e.  _V
1312resex 4925 . . . . . . . 8  |-  ( `' g  |`  ( A  \ 
U. D ) )  e.  _V
1410, 13unex 4419 . . . . . . 7  |-  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D ) ) )  e.  _V
158, 14eqeltri 2239 . . . . . 6  |-  H  e. 
_V
16 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
173, 16, 8sbthlemi9 6930 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
18 f1oen3g 6720 . . . . . 6  |-  ( ( H  e.  _V  /\  H : A -1-1-onto-> B )  ->  A  ~~  B )
1915, 17, 18sylancr 411 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B )
20193expib 1196 . . . 4  |-  (EXMID  ->  (
( f : A -1-1-> B  /\  g : B -1-1-> A )  ->  A  ~~  B ) )
2120exlimdvv 1885 . . 3  |-  (EXMID  ->  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B ) )
227, 21syl5bi 151 . 2  |-  (EXMID  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2322imp 123 1  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   _Vcvv 2726    \ cdif 3113    u. cun 3114    C_ wss 3116   U.cuni 3789   class class class wbr 3982  EXMIDwem 4173   `'ccnv 4603    |` cres 4606   "cima 4607   -1-1->wf1 5185   -1-1-onto->wf1o 5187    ~~ cen 6704    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-exmid 4174  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-en 6707  df-dom 6708
This theorem is referenced by:  isbth  6932
  Copyright terms: Public domain W3C validator