ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi10 Unicode version

Theorem sbthlemi10 6995
Description: Lemma for isbth 6996. (Contributed by NM, 28-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
sbthlem.3  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
sbthlem.4  |-  B  e. 
_V
Assertion
Ref Expression
sbthlemi10  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Distinct variable groups:    x, A    x, B    x, D    x, f,
g    x, H    f, g, A    B, f, g
Allowed substitution hints:    D( f, g)    H( f, g)

Proof of Theorem sbthlemi10
StepHypRef Expression
1 sbthlem.4 . . . . . 6  |-  B  e. 
_V
21brdom 6776 . . . . 5  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 sbthlem.1 . . . . . 6  |-  A  e. 
_V
43brdom 6776 . . . . 5  |-  ( B  ~<_  A  <->  E. g  g : B -1-1-> A )
52, 4anbi12i 460 . . . 4  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  ( E. f  f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
6 eeanv 1944 . . . 4  |-  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  <->  ( E. f 
f : A -1-1-> B  /\  E. g  g : B -1-1-> A ) )
75, 6bitr4i 187 . . 3  |-  ( ( A  ~<_  B  /\  B  ~<_  A )  <->  E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A ) )
8 sbthlem.3 . . . . . . 7  |-  H  =  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A 
\  U. D ) ) )
9 vex 2755 . . . . . . . . 9  |-  f  e. 
_V
109resex 4966 . . . . . . . 8  |-  ( f  |`  U. D )  e. 
_V
11 vex 2755 . . . . . . . . . 10  |-  g  e. 
_V
1211cnvex 5185 . . . . . . . . 9  |-  `' g  e.  _V
1312resex 4966 . . . . . . . 8  |-  ( `' g  |`  ( A  \ 
U. D ) )  e.  _V
1410, 13unex 4459 . . . . . . 7  |-  ( ( f  |`  U. D )  u.  ( `' g  |`  ( A  \  U. D ) ) )  e.  _V
158, 14eqeltri 2262 . . . . . 6  |-  H  e. 
_V
16 sbthlem.2 . . . . . . 7  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
173, 16, 8sbthlemi9 6994 . . . . . 6  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  H : A
-1-1-onto-> B )
18 f1oen3g 6780 . . . . . 6  |-  ( ( H  e.  _V  /\  H : A -1-1-onto-> B )  ->  A  ~~  B )
1915, 17, 18sylancr 414 . . . . 5  |-  ( (EXMID  /\  f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B )
20193expib 1208 . . . 4  |-  (EXMID  ->  (
( f : A -1-1-> B  /\  g : B -1-1-> A )  ->  A  ~~  B ) )
2120exlimdvv 1909 . . 3  |-  (EXMID  ->  ( E. f E. g ( f : A -1-1-> B  /\  g : B -1-1-> A
)  ->  A  ~~  B ) )
227, 21biimtrid 152 . 2  |-  (EXMID  ->  (
( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
2322imp 124 1  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   _Vcvv 2752    \ cdif 3141    u. cun 3142    C_ wss 3144   U.cuni 3824   class class class wbr 4018  EXMIDwem 4212   `'ccnv 4643    |` cres 4646   "cima 4647   -1-1->wf1 5232   -1-1-onto->wf1o 5234    ~~ cen 6764    ~<_ cdom 6765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-exmid 4213  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-en 6767  df-dom 6768
This theorem is referenced by:  isbth  6996
  Copyright terms: Public domain W3C validator