HomeHome Intuitionistic Logic Explorer
Theorem List (p. 50 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4901-5000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdm0 4901 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  (/)  =  (/)
 
Theoremdmi 4902 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  _I  =  _V
 
Theoremdmv 4903 The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
 |- 
 dom  _V  =  _V
 
Theoremdm0rn0 4904 An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4906. (Contributed by NM, 21-May-1998.)
 |-  ( dom  A  =  (/)  <->  ran 
 A  =  (/) )
 
Theoremreldm0 4905 A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
 |-  ( Rel  A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
 
Theoremdmmrnm 4906* A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
 |-  ( E. x  x  e.  dom  A  <->  E. y  y  e. 
 ran  A )
 
Theoremdmxpm 4907* The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
 
Theoremdmxpid 4908 The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
 |- 
 dom  ( A  X.  A )  =  A
 
Theoremdmxpin 4909 The domain of the intersection of two square Cartesian products. Unlike dmin 4895, equality holds. (Contributed by NM, 29-Jan-2008.)
 |- 
 dom  ( ( A  X.  A )  i^i  ( B  X.  B ) )  =  ( A  i^i  B )
 
Theoremxpid11 4910 The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
 
Theoremdmcnvcnv 4911 The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5142). (Contributed by NM, 8-Apr-2007.)
 |- 
 dom  `' `' A  =  dom  A
 
Theoremrncnvcnv 4912 The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
 |- 
 ran  `' `' A  =  ran  A
 
Theoremelreldm 4913 The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
 |-  ( ( Rel  A  /\  B  e.  A ) 
 ->  |^| |^| B  e.  dom  A )
 
Theoremrneq 4914 Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
 |-  ( A  =  B  ->  ran  A  =  ran  B )
 
Theoremrneqi 4915 Equality inference for range. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  ran  A  =  ran  B
 
Theoremrneqd 4916 Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ran  A  =  ran  B )
 
Theoremrnss 4917 Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ran  A  C_  ran  B )
 
Theorembrelrng 4918 The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
 |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B ) 
 ->  B  e.  ran  C )
 
Theoremopelrng 4919 Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )
 
Theorembrelrn 4920 The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A C B  ->  B  e.  ran  C )
 
Theoremopelrn 4921 Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )
 
Theoremreleldm 4922 The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremrelelrn 4923 The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  B  e.  ran  R )
 
Theoremreleldmb 4924* Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
 |-  ( Rel  R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
 
Theoremrelelrnb 4925* Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
 |-  ( Rel  R  ->  ( A  e.  ran  R  <->  E. x  x R A ) )
 
Theoremreleldmi 4926 The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  A  e.  dom  R )
 
Theoremrelelrni 4927 The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  B  e.  ran  R )
 
Theoremdfrnf 4928* Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  ran  A  =  { y  |  E. x  x A y }
 
Theoremelrn2 4929* Membership in a range. (Contributed by NM, 10-Jul-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  ran 
 B 
 <-> 
 E. x <. x ,  A >.  e.  B )
 
Theoremelrn 4930* Membership in a range. (Contributed by NM, 2-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  ran 
 B 
 <-> 
 E. x  x B A )
 
Theoremnfdm 4931 Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x dom  A
 
Theoremnfrn 4932 Bound-variable hypothesis builder for range. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x ran  A
 
Theoremdmiin 4933 Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
 |- 
 dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B
 
Theoremrnopab 4934* The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |- 
 ran  { <. x ,  y >.  |  ph }  =  { y  |  E. x ph
 }
 
Theoremrnmpt 4935* The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ran 
 F  =  { y  |  E. x  e.  A  y  =  B }
 
Theoremelrnmpt 4936* The range of a function in maps-to notation. (Contributed by Mario Carneiro, 20-Feb-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B )
 )
 
Theoremelrnmpt1s 4937* Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( x  =  D  ->  B  =  C )   =>    |-  ( ( D  e.  A  /\  C  e.  V )  ->  C  e.  ran  F )
 
Theoremelrnmpt1 4938 Elementhood in an image set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( ( x  e.  A  /\  B  e.  V )  ->  B  e.  ran 
 F )
 
Theoremelrnmptg 4939* Membership in the range of a function. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
 
Theoremelrnmpti 4940* Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  B  e.  _V   =>    |-  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B )
 
Theoremelrnmptdv 4941* Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  D  e.  V )   &    |-  (
 ( ph  /\  x  =  C )  ->  D  =  B )   =>    |-  ( ph  ->  D  e.  ran  F )
 
Theoremelrnmpt2d 4942* Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  F  =  ( x  e.  A  |->  B )   &    |-  ( ph  ->  C  e.  ran 
 F )   =>    |-  ( ph  ->  E. x  e.  A  C  =  B )
 
Theoremrn0 4943 The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.)
 |- 
 ran  (/)  =  (/)
 
Theoremdfiun3g 4944 Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A. x  e.  A  B  e.  C  -> 
 U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B ) )
 
Theoremdfiin3g 4945 Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( A. x  e.  A  B  e.  C  -> 
 |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B ) )
 
Theoremdfiun3 4946 Alternate definition of indexed union when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  U_ x  e.  A  B  =  U. ran  ( x  e.  A  |->  B )
 
Theoremdfiin3 4947 Alternate definition of indexed intersection when  B is a set. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   =>    |-  |^|_ x  e.  A  B  =  |^| ran  ( x  e.  A  |->  B )
 
Theoremriinint 4948* Express a relative indexed intersection as an intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( ( X  e.  V  /\  A. k  e.  I  S  C_  X )  ->  ( X  i^i  |^|_
 k  e.  I  S )  =  |^| ( { X }  u.  ran  (
 k  e.  I  |->  S ) ) )
 
Theoremrelrn0 4949 A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
 |-  ( Rel  A  ->  ( A  =  (/)  <->  ran  A  =  (/) ) )
 
Theoremdmrnssfld 4950 The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
 |-  ( dom  A  u.  ran 
 A )  C_  U. U. A
 
Theoremdmexg 4951 The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Apr-1995.)
 |-  ( A  e.  V  ->  dom  A  e.  _V )
 
Theoremrnexg 4952 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.)
 |-  ( A  e.  V  ->  ran  A  e.  _V )
 
Theoremdmexd 4953 The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  dom  A  e.  _V )
 
Theoremdmex 4954 The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.)
 |-  A  e.  _V   =>    |-  dom  A  e.  _V
 
Theoremrnex 4955 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.)
 |-  A  e.  _V   =>    |-  ran  A  e.  _V
 
Theoremiprc 4956 The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
 |- 
 -.  _I  e.  _V
 
Theoremdmcoss 4957 Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  o.  B )  C_  dom  B
 
Theoremrncoss 4958 Range of a composition. (Contributed by NM, 19-Mar-1998.)
 |- 
 ran  ( A  o.  B )  C_  ran  A
 
Theoremdmcosseq 4959 Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ran  B  C_  dom 
 A  ->  dom  ( A  o.  B )  = 
 dom  B )
 
Theoremdmcoeq 4960 Domain of a composition. (Contributed by NM, 19-Mar-1998.)
 |-  ( dom  A  =  ran  B  ->  dom  ( A  o.  B )  = 
 dom  B )
 
Theoremrncoeq 4961 Range of a composition. (Contributed by NM, 19-Mar-1998.)
 |-  ( dom  A  =  ran  B  ->  ran  ( A  o.  B )  = 
 ran  A )
 
Theoremreseq1 4962 Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
 
Theoremreseq2 4963 Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
 |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
 
Theoremreseq1i 4964 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  A  =  B   =>    |-  ( A  |`  C )  =  ( B  |`  C )
 
Theoremreseq2i 4965 Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  B   =>    |-  ( C  |`  A )  =  ( C  |`  B )
 
Theoremreseq12i 4966 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  |`  C )  =  ( B  |`  D )
 
Theoremreseq1d 4967 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
 
Theoremreseq2d 4968 Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )
 
Theoremreseq12d 4969 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  D ) )
 
Theoremnfres 4970 Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  |`  B )
 
Theoremcsbresg 4971 Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
 
Theoremres0 4972 A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
 |-  ( A  |`  (/) )  =  (/)
 
Theoremopelres 4973 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
 |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  ( <. A ,  B >.  e.  C  /\  A  e.  D )
 )
 
Theorembrres 4974 Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
 |-  B  e.  _V   =>    |-  ( A ( C  |`  D ) B 
 <->  ( A C B  /\  A  e.  D ) )
 
Theoremopelresg 4975 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
 |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
 ( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )
 
Theorembrresg 4976 Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
 |-  ( B  e.  V  ->  ( A ( C  |`  D ) B  <->  ( A C B  /\  A  e.  D ) ) )
 
Theoremopres 4977 Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  B  e.  _V   =>    |-  ( A  e.  D  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  C ) )
 
Theoremresieq 4978 A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
 |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C 
 <->  B  =  C ) )
 
Theoremopelresi 4979  <. A ,  A >. belongs to a restriction of the identity class iff  A belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
 |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <->  A  e.  B )
 )
 
Theoremresres 4980 The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
 |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )
 
Theoremresundi 4981 Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
 |-  ( A  |`  ( B  u.  C ) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
 
Theoremresundir 4982 Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
 |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
 
Theoremresindi 4983 Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
 |-  ( A  |`  ( B  i^i  C ) )  =  ( ( A  |`  B )  i^i  ( A  |`  C ) )
 
Theoremresindir 4984 Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
 |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
 
Theoreminres 4985 Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
 |-  ( A  i^i  ( B  |`  C ) )  =  ( ( A  i^i  B )  |`  C )
 
Theoremresdifcom 4986 Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
 |-  ( ( A  |`  B ) 
 \  C )  =  ( ( A  \  C )  |`  B )
 
Theoremresiun1 4987* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
 |-  ( U_ x  e.  A  B  |`  C )  =  U_ x  e.  A  ( B  |`  C )
 
Theoremresiun2 4988* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
 |-  ( C  |`  U_ x  e.  A  B )  = 
 U_ x  e.  A  ( C  |`  B )
 
Theoremdmres 4989 The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
 |- 
 dom  ( A  |`  B )  =  ( B  i^i  dom 
 A )
 
Theoremssdmres 4990 A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
 |-  ( A  C_  dom  B  <->  dom  ( B  |`  A )  =  A )
 
Theoremdmresexg 4991 The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
 |-  ( B  e.  V  ->  dom  ( A  |`  B )  e.  _V )
 
Theoremresss 4992 A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
 |-  ( A  |`  B ) 
 C_  A
 
Theoremrescom 4993 Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
 |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )
 
Theoremssres 4994 Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
 |-  ( A  C_  B  ->  ( A  |`  C ) 
 C_  ( B  |`  C ) )
 
Theoremssres2 4995 Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  C_  B  ->  ( C  |`  A ) 
 C_  ( C  |`  B ) )
 
Theoremrelres 4996 A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 Rel  ( A  |`  B )
 
Theoremresabs1 4997 Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
 |-  ( B  C_  C  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B )
 )
 
Theoremresabs1d 4998 Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  (
 ( A  |`  C )  |`  B )  =  ( A  |`  B )
 )
 
Theoremresabs2 4999 Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
 |-  ( B  C_  C  ->  ( ( A  |`  B )  |`  C )  =  ( A  |`  B )
 )
 
Theoremresidm 5000 Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
 |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >