ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindm Unicode version

Theorem resindm 5020
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)

Proof of Theorem resindm
StepHypRef Expression
1 resdm 5017 . . 3  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
21ineq2d 3382 . 2  |-  ( Rel 
A  ->  ( ( A  |`  B )  i^i  ( A  |`  dom  A
) )  =  ( ( A  |`  B )  i^i  A ) )
3 resindi 4993 . 2  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( ( A  |`  B )  i^i  ( A  |`  dom  A ) )
4 incom 3373 . . 3  |-  ( ( A  |`  B )  i^i  A )  =  ( A  i^i  ( A  |`  B ) )
5 inres 4995 . . 3  |-  ( A  i^i  ( A  |`  B ) )  =  ( ( A  i^i  A )  |`  B )
6 inidm 3390 . . . 4  |-  ( A  i^i  A )  =  A
76reseq1i 4974 . . 3  |-  ( ( A  i^i  A )  |`  B )  =  ( A  |`  B )
84, 5, 73eqtrri 2233 . 2  |-  ( A  |`  B )  =  ( ( A  |`  B )  i^i  A )
92, 3, 83eqtr4g 2265 1  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    i^i cin 3173   dom cdm 4693    |` cres 4695   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-res 4705
This theorem is referenced by:  resdmdfsn  5021
  Copyright terms: Public domain W3C validator