ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindm Unicode version

Theorem resindm 4942
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)

Proof of Theorem resindm
StepHypRef Expression
1 resdm 4939 . . 3  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
21ineq2d 3334 . 2  |-  ( Rel 
A  ->  ( ( A  |`  B )  i^i  ( A  |`  dom  A
) )  =  ( ( A  |`  B )  i^i  A ) )
3 resindi 4915 . 2  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( ( A  |`  B )  i^i  ( A  |`  dom  A ) )
4 incom 3325 . . 3  |-  ( ( A  |`  B )  i^i  A )  =  ( A  i^i  ( A  |`  B ) )
5 inres 4917 . . 3  |-  ( A  i^i  ( A  |`  B ) )  =  ( ( A  i^i  A )  |`  B )
6 inidm 3342 . . . 4  |-  ( A  i^i  A )  =  A
76reseq1i 4896 . . 3  |-  ( ( A  i^i  A )  |`  B )  =  ( A  |`  B )
84, 5, 73eqtrri 2201 . 2  |-  ( A  |`  B )  =  ( ( A  |`  B )  i^i  A )
92, 3, 83eqtr4g 2233 1  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3126   dom cdm 4620    |` cres 4622   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-dm 4630  df-res 4632
This theorem is referenced by:  resdmdfsn  4943
  Copyright terms: Public domain W3C validator