ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindm Unicode version

Theorem resindm 5047
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)

Proof of Theorem resindm
StepHypRef Expression
1 resdm 5044 . . 3  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
21ineq2d 3405 . 2  |-  ( Rel 
A  ->  ( ( A  |`  B )  i^i  ( A  |`  dom  A
) )  =  ( ( A  |`  B )  i^i  A ) )
3 resindi 5020 . 2  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( ( A  |`  B )  i^i  ( A  |`  dom  A ) )
4 incom 3396 . . 3  |-  ( ( A  |`  B )  i^i  A )  =  ( A  i^i  ( A  |`  B ) )
5 inres 5022 . . 3  |-  ( A  i^i  ( A  |`  B ) )  =  ( ( A  i^i  A )  |`  B )
6 inidm 3413 . . . 4  |-  ( A  i^i  A )  =  A
76reseq1i 5001 . . 3  |-  ( ( A  i^i  A )  |`  B )  =  ( A  |`  B )
84, 5, 73eqtrri 2255 . 2  |-  ( A  |`  B )  =  ( ( A  |`  B )  i^i  A )
92, 3, 83eqtr4g 2287 1  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    i^i cin 3196   dom cdm 4719    |` cres 4721   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729  df-res 4731
This theorem is referenced by:  resdmdfsn  5048
  Copyright terms: Public domain W3C validator