ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindm Unicode version

Theorem resindm 4951
Description: When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
Assertion
Ref Expression
resindm  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)

Proof of Theorem resindm
StepHypRef Expression
1 resdm 4948 . . 3  |-  ( Rel 
A  ->  ( A  |` 
dom  A )  =  A )
21ineq2d 3338 . 2  |-  ( Rel 
A  ->  ( ( A  |`  B )  i^i  ( A  |`  dom  A
) )  =  ( ( A  |`  B )  i^i  A ) )
3 resindi 4924 . 2  |-  ( A  |`  ( B  i^i  dom  A ) )  =  ( ( A  |`  B )  i^i  ( A  |`  dom  A ) )
4 incom 3329 . . 3  |-  ( ( A  |`  B )  i^i  A )  =  ( A  i^i  ( A  |`  B ) )
5 inres 4926 . . 3  |-  ( A  i^i  ( A  |`  B ) )  =  ( ( A  i^i  A )  |`  B )
6 inidm 3346 . . . 4  |-  ( A  i^i  A )  =  A
76reseq1i 4905 . . 3  |-  ( ( A  i^i  A )  |`  B )  =  ( A  |`  B )
84, 5, 73eqtrri 2203 . 2  |-  ( A  |`  B )  =  ( ( A  |`  B )  i^i  A )
92, 3, 83eqtr4g 2235 1  |-  ( Rel 
A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    i^i cin 3130   dom cdm 4628    |` cres 4630   Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-res 4640
This theorem is referenced by:  resdmdfsn  4952
  Copyright terms: Public domain W3C validator