ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resexg Unicode version

Theorem resexg 4924
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resexg  |-  ( A  e.  V  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resexg
StepHypRef Expression
1 resss 4908 . 2  |-  ( A  |`  B )  C_  A
2 ssexg 4121 . 2  |-  ( ( ( A  |`  B ) 
C_  A  /\  A  e.  V )  ->  ( A  |`  B )  e. 
_V )
31, 2mpan 421 1  |-  ( A  e.  V  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726    C_ wss 3116    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-res 4616
This theorem is referenced by:  resex  4925  offres  6103  resixp  6699  climres  11244  setsvalg  12424  setsex  12426  setsslid  12444
  Copyright terms: Public domain W3C validator