ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resexg Unicode version

Theorem resexg 5045
Description: The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
resexg  |-  ( A  e.  V  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resexg
StepHypRef Expression
1 resss 5029 . 2  |-  ( A  |`  B )  C_  A
2 ssexg 4223 . 2  |-  ( ( ( A  |`  B ) 
C_  A  /\  A  e.  V )  ->  ( A  |`  B )  e. 
_V )
31, 2mpan 424 1  |-  ( A  e.  V  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   _Vcvv 2799    C_ wss 3197    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-res 4731
This theorem is referenced by:  resex  5046  offres  6280  resixp  6880  seqf1oglem2  10742  climres  11814  setsvalg  13062  setsex  13064  setsslid  13083  gsumsplit1r  13431  znval  14600  znle  14601  znbaslemnn  14603  znleval  14617
  Copyright terms: Public domain W3C validator