ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeq Unicode version

Theorem rexeq 2662
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
rexeq  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexeq
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x A
2 nfcv 2308 . 2  |-  F/_ x B
31, 2rexeqf 2658 1  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by:  rexeqi  2666  rexeqdv  2668  rexeqbi1dv  2670  unieq  3798  bnd2  4152  exss  4205  qseq1  6549  finexdc  6868  supeq1  6951  isomni  7100  ismkv  7117  sup3exmid  8852  exmidunben  12359  neifval  12780  cnprcl2k  12846  bj-nn0sucALT  13860  strcoll2  13865  strcollnft  13866  strcollnfALT  13868  sscoll2  13870
  Copyright terms: Public domain W3C validator