| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeq | Unicode version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| rexeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 |
. 2
| |
| 2 | nfcv 2339 |
. 2
| |
| 3 | 1, 2 | rexeqf 2690 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 |
| This theorem is referenced by: rexeqi 2698 rexeqdv 2700 rexeqbi1dv 2706 unieq 3849 bnd2 4207 exss 4261 qseq1 6651 finexdc 6972 supeq1 7061 isomni 7211 ismkv 7228 sup3exmid 9001 exmidunben 12668 neifval 14460 cnprcl2k 14526 bj-nn0sucALT 15708 strcoll2 15713 strcollnft 15714 strcollnfALT 15716 sscoll2 15718 |
| Copyright terms: Public domain | W3C validator |