ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeq Unicode version

Theorem rexeq 2729
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
Assertion
Ref Expression
rexeq  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexeq
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ x A
2 nfcv 2372 . 2  |-  F/_ x B
31, 2rexeqf 2725 1  |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  rexeqi  2733  rexeqdv  2735  rexeqbi1dv  2741  unieq  3897  bnd2  4257  exss  4313  qseq1  6730  finexdc  7064  supeq1  7153  isomni  7303  ismkv  7320  sup3exmid  9104  exmidunben  12997  neifval  14814  cnprcl2k  14880  bj-nn0sucALT  16341  strcoll2  16346  strcollnft  16347  strcollnfALT  16349  sscoll2  16351
  Copyright terms: Public domain W3C validator