| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeq | Unicode version | ||
| Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| rexeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | 1, 2 | rexeqf 2699 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 |
| This theorem is referenced by: rexeqi 2707 rexeqdv 2709 rexeqbi1dv 2715 unieq 3859 bnd2 4217 exss 4271 qseq1 6670 finexdc 6999 supeq1 7088 isomni 7238 ismkv 7255 sup3exmid 9030 exmidunben 12797 neifval 14612 cnprcl2k 14678 bj-nn0sucALT 15914 strcoll2 15919 strcollnft 15920 strcollnfALT 15922 sscoll2 15924 |
| Copyright terms: Public domain | W3C validator |