| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq | Unicode version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 |
|
| nfeq.2 |
|
| Ref | Expression |
|---|---|
| nfeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2201 |
. 2
| |
| 2 | nfnfc.1 |
. . . . 5
| |
| 3 | 2 | nfcri 2344 |
. . . 4
|
| 4 | nfeq.2 |
. . . . 5
| |
| 5 | 4 | nfcri 2344 |
. . . 4
|
| 6 | 3, 5 | nfbi 1613 |
. . 3
|
| 7 | 6 | nfal 1600 |
. 2
|
| 8 | 1, 7 | nfxfr 1498 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 |
| This theorem is referenced by: nfel 2359 nfeq1 2360 nfeq2 2362 nfne 2471 raleqf 2701 rexeqf 2702 reueq1f 2703 rmoeq1f 2704 rabeqf 2766 sbceqg 3117 csbhypf 3140 nfiotadw 5254 nffn 5389 nffo 5519 fvmptdf 5690 mpteqb 5693 fvmptf 5695 eqfnfv2f 5704 dff13f 5862 ovmpos 6092 ov2gf 6093 ovmpodxf 6094 ovmpodf 6100 eqerlem 6674 sumeq2 11785 fsumadd 11832 prodeq1f 11978 prodeq2 11983 txcnp 14858 cnmpt11 14870 cnmpt21 14878 cnmptcom 14885 dvmptfsum 15312 lgseisenlem2 15663 |
| Copyright terms: Public domain | W3C validator |