ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq Unicode version

Theorem nfeq 2237
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfeq  |-  F/ x  A  =  B

Proof of Theorem nfeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2083 . 2  |-  ( A  =  B  <->  A. z
( z  e.  A  <->  z  e.  B ) )
2 nfnfc.1 . . . . 5  |-  F/_ x A
32nfcri 2223 . . . 4  |-  F/ x  z  e.  A
4 nfeq.2 . . . . 5  |-  F/_ x B
54nfcri 2223 . . . 4  |-  F/ x  z  e.  B
63, 5nfbi 1527 . . 3  |-  F/ x
( z  e.  A  <->  z  e.  B )
76nfal 1514 . 2  |-  F/ x A. z ( z  e.  A  <->  z  e.  B
)
81, 7nfxfr 1409 1  |-  F/ x  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1288    = wceq 1290   F/wnf 1395    e. wcel 1439   F/_wnfc 2216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085  df-nfc 2218
This theorem is referenced by:  nfel  2238  nfeq1  2239  nfeq2  2241  nfne  2349  raleqf  2559  rexeqf  2560  reueq1f  2561  rmoeq1f  2562  rabeqf  2610  sbceqg  2948  csbhypf  2967  nfiotadxy  4996  nffn  5123  nffo  5245  fvmptdf  5403  mpteqb  5406  fvmptf  5408  eqfnfv2f  5415  dff13f  5563  ovmpt2s  5782  ov2gf  5783  ovmpt2dxf  5784  ovmpt2df  5790  eqerlem  6337  sumeq2  10809  fsumadd  10861
  Copyright terms: Public domain W3C validator