| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq | Unicode version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 |
|
| nfeq.2 |
|
| Ref | Expression |
|---|---|
| nfeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2223 |
. 2
| |
| 2 | nfnfc.1 |
. . . . 5
| |
| 3 | 2 | nfcri 2366 |
. . . 4
|
| 4 | nfeq.2 |
. . . . 5
| |
| 5 | 4 | nfcri 2366 |
. . . 4
|
| 6 | 3, 5 | nfbi 1635 |
. . 3
|
| 7 | 6 | nfal 1622 |
. 2
|
| 8 | 1, 7 | nfxfr 1520 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: nfel 2381 nfeq1 2382 nfeq2 2384 nfne 2493 raleqf 2724 rexeqf 2725 reueq1f 2726 rmoeq1f 2727 rabeqf 2789 sbceqg 3140 csbhypf 3163 nfiotadw 5281 nffn 5417 nffo 5547 fvmptdf 5722 mpteqb 5725 fvmptf 5727 eqfnfv2f 5736 dff13f 5894 ovmpos 6128 ov2gf 6129 ovmpodxf 6130 ovmpodf 6136 eqerlem 6711 sumeq2 11870 fsumadd 11917 prodeq1f 12063 prodeq2 12068 txcnp 14945 cnmpt11 14957 cnmpt21 14965 cnmptcom 14972 dvmptfsum 15399 lgseisenlem2 15750 |
| Copyright terms: Public domain | W3C validator |