ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeq Unicode version

Theorem nfeq 2356
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfnfc.1  |-  F/_ x A
nfeq.2  |-  F/_ x B
Assertion
Ref Expression
nfeq  |-  F/ x  A  =  B

Proof of Theorem nfeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2199 . 2  |-  ( A  =  B  <->  A. z
( z  e.  A  <->  z  e.  B ) )
2 nfnfc.1 . . . . 5  |-  F/_ x A
32nfcri 2342 . . . 4  |-  F/ x  z  e.  A
4 nfeq.2 . . . . 5  |-  F/_ x B
54nfcri 2342 . . . 4  |-  F/ x  z  e.  B
63, 5nfbi 1612 . . 3  |-  F/ x
( z  e.  A  <->  z  e.  B )
76nfal 1599 . 2  |-  F/ x A. z ( z  e.  A  <->  z  e.  B
)
81, 7nfxfr 1497 1  |-  F/ x  A  =  B
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1483    e. wcel 2176   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337
This theorem is referenced by:  nfel  2357  nfeq1  2358  nfeq2  2360  nfne  2469  raleqf  2698  rexeqf  2699  reueq1f  2700  rmoeq1f  2701  rabeqf  2762  sbceqg  3109  csbhypf  3132  nfiotadw  5236  nffn  5371  nffo  5499  fvmptdf  5669  mpteqb  5672  fvmptf  5674  eqfnfv2f  5683  dff13f  5841  ovmpos  6071  ov2gf  6072  ovmpodxf  6073  ovmpodf  6079  eqerlem  6653  sumeq2  11703  fsumadd  11750  prodeq1f  11896  prodeq2  11901  txcnp  14776  cnmpt11  14788  cnmpt21  14796  cnmptcom  14803  dvmptfsum  15230  lgseisenlem2  15581
  Copyright terms: Public domain W3C validator