![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeq | Unicode version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 |
![]() ![]() ![]() ![]() |
nfeq.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfeq |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2083 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfnfc.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2223 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
4 | nfeq.2 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 4 | nfcri 2223 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | nfbi 1527 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | nfal 1514 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | nfxfr 1409 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-cleq 2082 df-clel 2085 df-nfc 2218 |
This theorem is referenced by: nfel 2238 nfeq1 2239 nfeq2 2241 nfne 2349 raleqf 2559 rexeqf 2560 reueq1f 2561 rmoeq1f 2562 rabeqf 2610 sbceqg 2948 csbhypf 2967 nfiotadxy 4996 nffn 5123 nffo 5245 fvmptdf 5403 mpteqb 5406 fvmptf 5408 eqfnfv2f 5415 dff13f 5563 ovmpt2s 5782 ov2gf 5783 ovmpt2dxf 5784 ovmpt2df 5790 eqerlem 6337 sumeq2 10809 fsumadd 10861 |
Copyright terms: Public domain | W3C validator |