| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfeq | Unicode version | ||
| Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc.1 |
|
| nfeq.2 |
|
| Ref | Expression |
|---|---|
| nfeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2199 |
. 2
| |
| 2 | nfnfc.1 |
. . . . 5
| |
| 3 | 2 | nfcri 2342 |
. . . 4
|
| 4 | nfeq.2 |
. . . . 5
| |
| 5 | 4 | nfcri 2342 |
. . . 4
|
| 6 | 3, 5 | nfbi 1612 |
. . 3
|
| 7 | 6 | nfal 1599 |
. 2
|
| 8 | 1, 7 | nfxfr 1497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 |
| This theorem is referenced by: nfel 2357 nfeq1 2358 nfeq2 2360 nfne 2469 raleqf 2698 rexeqf 2699 reueq1f 2700 rmoeq1f 2701 rabeqf 2762 sbceqg 3109 csbhypf 3132 nfiotadw 5235 nffn 5370 nffo 5497 fvmptdf 5667 mpteqb 5670 fvmptf 5672 eqfnfv2f 5681 dff13f 5839 ovmpos 6069 ov2gf 6070 ovmpodxf 6071 ovmpodf 6077 eqerlem 6651 sumeq2 11670 fsumadd 11717 prodeq1f 11863 prodeq2 11868 txcnp 14743 cnmpt11 14755 cnmpt21 14763 cnmptcom 14770 dvmptfsum 15197 lgseisenlem2 15548 |
| Copyright terms: Public domain | W3C validator |