![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfeq | Unicode version |
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc.1 |
![]() ![]() ![]() ![]() |
nfeq.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfeq |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfnfc.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 2 | nfcri 2330 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
4 | nfeq.2 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 4 | nfcri 2330 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 3, 5 | nfbi 1600 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | nfal 1587 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 7 | nfxfr 1485 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: nfel 2345 nfeq1 2346 nfeq2 2348 nfne 2457 raleqf 2686 rexeqf 2687 reueq1f 2688 rmoeq1f 2689 rabeqf 2750 sbceqg 3096 csbhypf 3119 nfiotadw 5218 nffn 5350 nffo 5475 fvmptdf 5645 mpteqb 5648 fvmptf 5650 eqfnfv2f 5659 dff13f 5813 ovmpos 6042 ov2gf 6043 ovmpodxf 6044 ovmpodf 6050 eqerlem 6618 sumeq2 11502 fsumadd 11549 prodeq1f 11695 prodeq2 11700 txcnp 14439 cnmpt11 14451 cnmpt21 14459 cnmptcom 14466 lgseisenlem2 15187 |
Copyright terms: Public domain | W3C validator |