ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqf GIF version

Theorem rexeqf 2658
Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleq1f.1 𝑥𝐴
raleq1f.2 𝑥𝐵
Assertion
Ref Expression
rexeqf (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))

Proof of Theorem rexeqf
StepHypRef Expression
1 raleq1f.1 . . . 4 𝑥𝐴
2 raleq1f.2 . . . 4 𝑥𝐵
31, 2nfeq 2316 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2230 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 461 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5exbid 1604 . 2 (𝐴 = 𝐵 → (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝑥𝐵𝜑)))
7 df-rex 2450 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
8 df-rex 2450 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
96, 7, 83bitr4g 222 1 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wnfc 2295  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450
This theorem is referenced by:  rexeq  2662
  Copyright terms: Public domain W3C validator