| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rextp | Unicode version | ||
| Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raltp.1 |
|
| raltp.2 |
|
| raltp.3 |
|
| raltp.4 |
|
| raltp.5 |
|
| raltp.6 |
|
| Ref | Expression |
|---|---|
| rextp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raltp.1 |
. 2
| |
| 2 | raltp.2 |
. 2
| |
| 3 | raltp.3 |
. 2
| |
| 4 | raltp.4 |
. . 3
| |
| 5 | raltp.5 |
. . 3
| |
| 6 | raltp.6 |
. . 3
| |
| 7 | 4, 5, 6 | rextpg 3692 |
. 2
|
| 8 | 1, 2, 3, 7 | mp3an 1350 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-sn 3644 df-pr 3645 df-tp 3646 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |