ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raltp Unicode version

Theorem raltp 3664
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
raltp.1  |-  A  e. 
_V
raltp.2  |-  B  e. 
_V
raltp.3  |-  C  e. 
_V
raltp.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
raltp.5  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
raltp.6  |-  ( x  =  C  ->  ( ph 
<->  th ) )
Assertion
Ref Expression
raltp  |-  ( A. x  e.  { A ,  B ,  C } ph 
<->  ( ps  /\  ch  /\ 
th ) )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x    th, x
Allowed substitution hint:    ph( x)

Proof of Theorem raltp
StepHypRef Expression
1 raltp.1 . 2  |-  A  e. 
_V
2 raltp.2 . 2  |-  B  e. 
_V
3 raltp.3 . 2  |-  C  e. 
_V
4 raltp.4 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
5 raltp.5 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
6 raltp.6 . . 3  |-  ( x  =  C  ->  ( ph 
<->  th ) )
74, 5, 6raltpg 3660 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A. x  e.  { A ,  B ,  C } ph 
<->  ( ps  /\  ch  /\ 
th ) ) )
81, 2, 3, 7mp3an 1348 1  |-  ( A. x  e.  { A ,  B ,  C } ph 
<->  ( ps  /\  ch  /\ 
th ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752   {ctp 3609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-sbc 2978  df-un 3148  df-sn 3613  df-pr 3614  df-tp 3615
This theorem is referenced by:  fztpval  10108
  Copyright terms: Public domain W3C validator