ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rextpg Unicode version

Theorem rextpg 3692
Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralprg.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
raltpg.3  |-  ( x  =  C  ->  ( ph 
<->  th ) )
Assertion
Ref Expression
rextpg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( E. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  \/  ch  \/  th )
) )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x    th, x
Allowed substitution hints:    ph( x)    V( x)    W( x)    X( x)

Proof of Theorem rextpg
StepHypRef Expression
1 ralprg.1 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 ralprg.2 . . . . . 6  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
31, 2rexprg 3690 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
43orbi1d 793 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( E. x  e.  { A ,  B } ph  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  E. x  e.  { C } ph ) ) )
5 raltpg.3 . . . . . 6  |-  ( x  =  C  ->  ( ph 
<->  th ) )
65rexsng 3679 . . . . 5  |-  ( C  e.  X  ->  ( E. x  e.  { C } ph  <->  th ) )
76orbi2d 792 . . . 4  |-  ( C  e.  X  ->  (
( ( ps  \/  ch )  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  th )
) )
84, 7sylan9bb 462 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  (
( E. x  e. 
{ A ,  B } ph  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  th )
) )
983impa 1197 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( E. x  e.  { A ,  B } ph  \/  E. x  e.  { C } ph ) 
<->  ( ( ps  \/  ch )  \/  th )
) )
10 df-tp 3646 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
1110rexeqi 2708 . . 3  |-  ( E. x  e.  { A ,  B ,  C } ph 
<->  E. x  e.  ( { A ,  B }  u.  { C } ) ph )
12 rexun 3357 . . 3  |-  ( E. x  e.  ( { A ,  B }  u.  { C } )
ph 
<->  ( E. x  e. 
{ A ,  B } ph  \/  E. x  e.  { C } ph ) )
1311, 12bitri 184 . 2  |-  ( E. x  e.  { A ,  B ,  C } ph 
<->  ( E. x  e. 
{ A ,  B } ph  \/  E. x  e.  { C } ph ) )
14 df-3or 982 . 2  |-  ( ( ps  \/  ch  \/  th )  <->  ( ( ps  \/  ch )  \/ 
th ) )
159, 13, 143bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( E. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  \/  ch  \/  th )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486    u. cun 3168   {csn 3638   {cpr 3639   {ctp 3640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-sn 3644  df-pr 3645  df-tp 3646
This theorem is referenced by:  rextp  3696
  Copyright terms: Public domain W3C validator