ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoan Unicode version

Theorem rmoan 2952
Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmoan  |-  ( E* x  e.  A  ph  ->  E* x  e.  A  ( ps  /\  ph )
)

Proof of Theorem rmoan
StepHypRef Expression
1 moan 2107 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  ->  E* x ( ps 
/\  ( x  e.  A  /\  ph )
) )
2 an12 561 . . . 4  |-  ( ( ps  /\  ( x  e.  A  /\  ph ) )  <->  ( x  e.  A  /\  ( ps  /\  ph ) ) )
32mobii 2075 . . 3  |-  ( E* x ( ps  /\  ( x  e.  A  /\  ph ) )  <->  E* x
( x  e.  A  /\  ( ps  /\  ph ) ) )
41, 3sylib 122 . 2  |-  ( E* x ( x  e.  A  /\  ph )  ->  E* x ( x  e.  A  /\  ( ps  /\  ph ) ) )
5 df-rmo 2476 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
6 df-rmo 2476 . 2  |-  ( E* x  e.  A  ( ps  /\  ph )  <->  E* x ( x  e.  A  /\  ( ps 
/\  ph ) ) )
74, 5, 63imtr4i 201 1  |-  ( E* x  e.  A  ph  ->  E* x  e.  A  ( ps  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E*wmo 2039    e. wcel 2160   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-rmo 2476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator