ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an12 Unicode version

Theorem an12 561
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
an12  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )

Proof of Theorem an12
StepHypRef Expression
1 ancom 266 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21anbi1i 458 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ps  /\  ph )  /\  ch ) )
3 anass 401 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ph  /\  ( ps  /\  ch ) ) )
4 anass 401 . 2  |-  ( ( ( ps  /\  ph )  /\  ch )  <->  ( ps  /\  ( ph  /\  ch ) ) )
52, 3, 43bitr3i 210 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32  562  an13  563  an12s  565  an4  586  ceqsrexv  2903  rmoan  2973  2reuswapdc  2977  reuind  2978  2rmorex  2979  sbccomlem  3073  elunirab  3863  rexxfrd  4510  opeliunxp  4730  elres  4995  resoprab  6041  ov6g  6084  opabex3d  6206  opabex3  6207  xpassen  6925  distrnqg  7500  distrnq0  7572  rexuz2  9702  2clim  11612  bitsmod  12267  issubrg  13983  isbasis2g  14517  tgval2  14523
  Copyright terms: Public domain W3C validator