ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an12 Unicode version

Theorem an12 561
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.)
Assertion
Ref Expression
an12  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )

Proof of Theorem an12
StepHypRef Expression
1 ancom 266 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21anbi1i 458 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ( ps  /\  ph )  /\  ch ) )
3 anass 401 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  <->  ( ph  /\  ( ps  /\  ch ) ) )
4 anass 401 . 2  |-  ( ( ( ps  /\  ph )  /\  ch )  <->  ( ps  /\  ( ph  /\  ch ) ) )
52, 3, 43bitr3i 210 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ps  /\  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an32  562  an13  563  an12s  565  an4  586  ceqsrexv  2910  rmoan  2980  2reuswapdc  2984  reuind  2985  2rmorex  2986  sbccomlem  3080  elunirab  3877  rexxfrd  4528  opeliunxp  4748  elres  5014  resoprab  6064  ov6g  6107  opabex3d  6229  opabex3  6230  xpassen  6950  distrnqg  7535  distrnq0  7607  rexuz2  9737  2clim  11727  bitsmod  12382  issubrg  14098  isbasis2g  14632  tgval2  14638
  Copyright terms: Public domain W3C validator