| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rmoan | GIF version | ||
| Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| rmoan | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | moan 2114 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃*𝑥(𝜓 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | an12 561 | . . . 4 ⊢ ((𝜓 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) | |
| 3 | 2 | mobii 2082 | . . 3 ⊢ (∃*𝑥(𝜓 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) | 
| 4 | 1, 3 | sylib 122 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) | 
| 5 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) | |
| 7 | 4, 5, 6 | 3imtr4i 201 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∃*wmo 2046 ∈ wcel 2167 ∃*wrmo 2478 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-rmo 2483 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |