Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rmoan | GIF version |
Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmoan | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moan 2093 | . . 3 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃*𝑥(𝜓 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | an12 561 | . . . 4 ⊢ ((𝜓 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) | |
3 | 2 | mobii 2061 | . . 3 ⊢ (∃*𝑥(𝜓 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) |
4 | 1, 3 | sylib 122 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) |
5 | df-rmo 2461 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | df-rmo 2461 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝜓 ∧ 𝜑))) | |
7 | 4, 5, 6 | 3imtr4i 201 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 → ∃*𝑥 ∈ 𝐴 (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃*wmo 2025 ∈ wcel 2146 ∃*wrmo 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-rmo 2461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |