ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoan GIF version

Theorem rmoan 2935
Description: Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmoan (∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))

Proof of Theorem rmoan
StepHypRef Expression
1 moan 2093 . . 3 (∃*𝑥(𝑥𝐴𝜑) → ∃*𝑥(𝜓 ∧ (𝑥𝐴𝜑)))
2 an12 561 . . . 4 ((𝜓 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴 ∧ (𝜓𝜑)))
32mobii 2061 . . 3 (∃*𝑥(𝜓 ∧ (𝑥𝐴𝜑)) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
41, 3sylib 122 . 2 (∃*𝑥(𝑥𝐴𝜑) → ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
5 df-rmo 2461 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
6 df-rmo 2461 . 2 (∃*𝑥𝐴 (𝜓𝜑) ↔ ∃*𝑥(𝑥𝐴 ∧ (𝜓𝜑)))
74, 5, 63imtr4i 201 1 (∃*𝑥𝐴 𝜑 → ∃*𝑥𝐴 (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  ∃*wmo 2025  wcel 2146  ∃*wrmo 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-rmo 2461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator