ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeqd Unicode version

Theorem rmoeqd 2705
Description: Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
raleqd.1  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmoeqd  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ps ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem rmoeqd
StepHypRef Expression
1 rmoeq1 2693 . 2  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
2 raleqd.1 . . 3  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
32rmobidv 2683 . 2  |-  ( A  =  B  ->  ( E* x  e.  B  ph  <->  E* x  e.  B  ps ) )
41, 3bitrd 188 1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E*wrmo 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rmo 2480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator