ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueqd Unicode version

Theorem reueqd 2683
Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
Hypothesis
Ref Expression
raleqd.1  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reueqd  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ps ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem reueqd
StepHypRef Expression
1 reueq1 2675 . 2  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
2 raleqd.1 . . 3  |-  ( A  =  B  ->  ( ph 
<->  ps ) )
32reubidv 2661 . 2  |-  ( A  =  B  ->  ( E! x  e.  B  ph  <->  E! x  e.  B  ps ) )
41, 3bitrd 188 1  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   E!wreu 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-cleq 2170  df-clel 2173  df-nfc 2308  df-reu 2462
This theorem is referenced by:  acexmidlemcase  5870  srgideu  13155
  Copyright terms: Public domain W3C validator