Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
Ref | Expression |
---|---|
raleqbidv.1 | |
raleqbidv.2 |
Ref | Expression |
---|---|
raleqbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . 3 | |
2 | 1 | raleqdv 2667 | . 2 |
3 | raleqbidv.2 | . . 3 | |
4 | 3 | ralbidv 2466 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: ofrfval 6058 fmpox 6168 tfrlemi1 6300 supeq123d 6956 cvg1nlemcau 10926 cvg1nlemres 10927 cau3lem 11056 fsum2dlemstep 11375 fisumcom2 11379 fprod2dlemstep 11563 fprodcom2fi 11567 pcfac 12280 ismgm 12588 mgm1 12601 grpidvalg 12604 istopg 12637 restbasg 12808 cnfval 12834 cnpfval 12835 txbas 12898 limccl 13268 sscoll2 13870 |
Copyright terms: Public domain | W3C validator |