| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 |
|
| raleqbidv.2 |
|
| Ref | Expression |
|---|---|
| raleqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 |
. . 3
| |
| 2 | 1 | raleqdv 2734 |
. 2
|
| 3 | raleqbidv.2 |
. . 3
| |
| 4 | 3 | ralbidv 2530 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: rspc2vd 3193 ofrfval 6227 fmpox 6346 tfrlemi1 6478 supeq123d 7158 acneq 7384 cvg1nlemcau 11495 cvg1nlemres 11496 cau3lem 11625 fsum2dlemstep 11945 fisumcom2 11949 fprod2dlemstep 12133 fprodcom2fi 12137 pcfac 12873 ptex 13297 prdsex 13302 prdsval 13306 ismgm 13390 mgm1 13403 grpidvalg 13406 gsumress 13428 issgrp 13436 sgrp1 13444 sgrppropd 13446 ismnddef 13451 ismndd 13470 mndpropd 13473 mnd1 13488 ismhm 13494 mhmex 13495 resmhm 13520 isgrp 13539 grppropd 13550 isgrpd2e 13553 grp1 13639 isnsg 13739 nmznsg 13750 isghm 13780 cmnpropd 13832 iscmnd 13835 isrng 13897 rngpropd 13918 dfur2g 13925 issrg 13928 issrgid 13944 isring 13963 iscrng2 13978 ringideu 13980 isringid 13988 ringpropd 14001 ring1 14022 oppr0g 14044 oppr1g 14045 isrhm2d 14129 rhmopp 14140 islring 14156 rrgval 14226 isdomn 14233 opprdomnbg 14238 islmod 14255 islmodd 14257 lmodprop2d 14312 lsssetm 14320 islidlm 14443 rnglidlmmgm 14460 rnglidlmsgrp 14461 mplvalcoe 14654 istopg 14673 restbasg 14842 cnfval 14868 cnpfval 14869 txbas 14932 limccl 15333 iswlk 16036 sscoll2 16351 |
| Copyright terms: Public domain | W3C validator |