Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbidv Unicode version

Theorem raleqbidv 2638
 Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1
raleqbidv.2
Assertion
Ref Expression
raleqbidv
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem raleqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3
21raleqdv 2632 . 2
3 raleqbidv.2 . . 3
43ralbidv 2437 . 2
52, 4bitrd 187 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331  wral 2416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421 This theorem is referenced by:  ofrfval  5990  fmpox  6098  tfrlemi1  6229  supeq123d  6878  cvg1nlemcau  10768  cvg1nlemres  10769  cau3lem  10898  fsum2dlemstep  11215  fisumcom2  11219  istopg  12180  restbasg  12351  cnfval  12377  cnpfval  12378  txbas  12441  limccl  12811  sscoll2  13291
 Copyright terms: Public domain W3C validator