| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 |
|
| raleqbidv.2 |
|
| Ref | Expression |
|---|---|
| raleqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 |
. . 3
| |
| 2 | 1 | raleqdv 2699 |
. 2
|
| 3 | raleqbidv.2 |
. . 3
| |
| 4 | 3 | ralbidv 2497 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: rspc2vd 3153 ofrfval 6148 fmpox 6267 tfrlemi1 6399 supeq123d 7066 acneq 7285 cvg1nlemcau 11166 cvg1nlemres 11167 cau3lem 11296 fsum2dlemstep 11616 fisumcom2 11620 fprod2dlemstep 11804 fprodcom2fi 11808 pcfac 12544 ptex 12966 prdsex 12971 prdsval 12975 ismgm 13059 mgm1 13072 grpidvalg 13075 gsumress 13097 issgrp 13105 sgrp1 13113 sgrppropd 13115 ismnddef 13120 ismndd 13139 mndpropd 13142 mnd1 13157 ismhm 13163 mhmex 13164 resmhm 13189 isgrp 13208 grppropd 13219 isgrpd2e 13222 grp1 13308 isnsg 13408 nmznsg 13419 isghm 13449 cmnpropd 13501 iscmnd 13504 isrng 13566 rngpropd 13587 dfur2g 13594 issrg 13597 issrgid 13613 isring 13632 iscrng2 13647 ringideu 13649 isringid 13657 ringpropd 13670 ring1 13691 oppr0g 13713 oppr1g 13714 isrhm2d 13797 rhmopp 13808 islring 13824 rrgval 13894 isdomn 13901 opprdomnbg 13906 islmod 13923 islmodd 13925 lmodprop2d 13980 lsssetm 13988 islidlm 14111 rnglidlmmgm 14128 rnglidlmsgrp 14129 istopg 14319 restbasg 14488 cnfval 14514 cnpfval 14515 txbas 14578 limccl 14979 sscoll2 15718 |
| Copyright terms: Public domain | W3C validator |