Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
Ref | Expression |
---|---|
raleqbidv.1 | |
raleqbidv.2 |
Ref | Expression |
---|---|
raleqbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . 3 | |
2 | 1 | raleqdv 2671 | . 2 |
3 | raleqbidv.2 | . . 3 | |
4 | 3 | ralbidv 2470 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: rspc2vd 3117 ofrfval 6069 fmpox 6179 tfrlemi1 6311 supeq123d 6968 cvg1nlemcau 10948 cvg1nlemres 10949 cau3lem 11078 fsum2dlemstep 11397 fisumcom2 11401 fprod2dlemstep 11585 fprodcom2fi 11589 pcfac 12302 ismgm 12611 mgm1 12624 grpidvalg 12627 issgrp 12644 sgrp1 12651 ismnddef 12654 ismndd 12673 mndpropd 12676 mnd1 12679 ismhm 12685 isgrp 12714 grppropd 12724 isgrpd2e 12726 istopg 12791 restbasg 12962 cnfval 12988 cnpfval 12989 txbas 13052 limccl 13422 sscoll2 14023 |
Copyright terms: Public domain | W3C validator |