![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
Ref | Expression |
---|---|
raleqbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
raleqbidv.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
raleqbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | raleqdv 2696 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | raleqbidv.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ralbidv 2494 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 |
This theorem is referenced by: rspc2vd 3150 ofrfval 6141 fmpox 6255 tfrlemi1 6387 supeq123d 7052 cvg1nlemcau 11131 cvg1nlemres 11132 cau3lem 11261 fsum2dlemstep 11580 fisumcom2 11584 fprod2dlemstep 11768 fprodcom2fi 11772 pcfac 12491 ptex 12878 prdsex 12883 ismgm 12943 mgm1 12956 grpidvalg 12959 gsumress 12981 issgrp 12989 sgrp1 12997 sgrppropd 12999 ismnddef 13002 ismndd 13021 mndpropd 13024 mnd1 13030 ismhm 13036 mhmex 13037 resmhm 13062 isgrp 13081 grppropd 13092 isgrpd2e 13095 grp1 13181 isnsg 13275 nmznsg 13286 isghm 13316 cmnpropd 13368 iscmnd 13371 isrng 13433 rngpropd 13454 dfur2g 13461 issrg 13464 issrgid 13480 isring 13499 iscrng2 13514 ringideu 13516 isringid 13524 ringpropd 13537 ring1 13558 oppr0g 13580 oppr1g 13581 isrhm2d 13664 rhmopp 13675 islring 13691 rrgval 13761 isdomn 13768 opprdomnbg 13773 islmod 13790 islmodd 13792 lmodprop2d 13847 lsssetm 13855 islidlm 13978 rnglidlmmgm 13995 rnglidlmsgrp 13996 istopg 14178 restbasg 14347 cnfval 14373 cnpfval 14374 txbas 14437 limccl 14838 sscoll2 15550 |
Copyright terms: Public domain | W3C validator |