| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 |
|
| raleqbidv.2 |
|
| Ref | Expression |
|---|---|
| raleqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 |
. . 3
| |
| 2 | 1 | raleqdv 2699 |
. 2
|
| 3 | raleqbidv.2 |
. . 3
| |
| 4 | 3 | ralbidv 2497 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: rspc2vd 3153 ofrfval 6148 fmpox 6262 tfrlemi1 6394 supeq123d 7061 cvg1nlemcau 11154 cvg1nlemres 11155 cau3lem 11284 fsum2dlemstep 11604 fisumcom2 11608 fprod2dlemstep 11792 fprodcom2fi 11796 pcfac 12532 ptex 12954 prdsex 12959 prdsval 12963 ismgm 13047 mgm1 13060 grpidvalg 13063 gsumress 13085 issgrp 13093 sgrp1 13101 sgrppropd 13103 ismnddef 13106 ismndd 13125 mndpropd 13128 mnd1 13134 ismhm 13140 mhmex 13141 resmhm 13166 isgrp 13185 grppropd 13196 isgrpd2e 13199 grp1 13285 isnsg 13379 nmznsg 13390 isghm 13420 cmnpropd 13472 iscmnd 13475 isrng 13537 rngpropd 13558 dfur2g 13565 issrg 13568 issrgid 13584 isring 13603 iscrng2 13618 ringideu 13620 isringid 13628 ringpropd 13641 ring1 13662 oppr0g 13684 oppr1g 13685 isrhm2d 13768 rhmopp 13779 islring 13795 rrgval 13865 isdomn 13872 opprdomnbg 13877 islmod 13894 islmodd 13896 lmodprop2d 13951 lsssetm 13959 islidlm 14082 rnglidlmmgm 14099 rnglidlmsgrp 14100 istopg 14282 restbasg 14451 cnfval 14477 cnpfval 14478 txbas 14541 limccl 14942 sscoll2 15681 |
| Copyright terms: Public domain | W3C validator |