ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbidv Unicode version

Theorem raleqbidv 2673
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1  |-  ( ph  ->  A  =  B )
raleqbidv.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
raleqbidv  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem raleqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3  |-  ( ph  ->  A  =  B )
21raleqdv 2667 . 2  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ps )
)
3 raleqbidv.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
43ralbidv 2466 . 2  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. x  e.  B  ch )
)
52, 4bitrd 187 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  ofrfval  6058  fmpox  6168  tfrlemi1  6300  supeq123d  6956  cvg1nlemcau  10926  cvg1nlemres  10927  cau3lem  11056  fsum2dlemstep  11375  fisumcom2  11379  fprod2dlemstep  11563  fprodcom2fi  11567  pcfac  12280  ismgm  12588  mgm1  12601  grpidvalg  12604  istopg  12637  restbasg  12808  cnfval  12834  cnpfval  12835  txbas  12898  limccl  13268  sscoll2  13870
  Copyright terms: Public domain W3C validator