| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 |
|
| raleqbidv.2 |
|
| Ref | Expression |
|---|---|
| raleqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 |
. . 3
| |
| 2 | 1 | raleqdv 2699 |
. 2
|
| 3 | raleqbidv.2 |
. . 3
| |
| 4 | 3 | ralbidv 2497 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: rspc2vd 3153 ofrfval 6148 fmpox 6267 tfrlemi1 6399 supeq123d 7066 acneq 7287 cvg1nlemcau 11168 cvg1nlemres 11169 cau3lem 11298 fsum2dlemstep 11618 fisumcom2 11622 fprod2dlemstep 11806 fprodcom2fi 11810 pcfac 12546 ptex 12968 prdsex 12973 prdsval 12977 ismgm 13061 mgm1 13074 grpidvalg 13077 gsumress 13099 issgrp 13107 sgrp1 13115 sgrppropd 13117 ismnddef 13122 ismndd 13141 mndpropd 13144 mnd1 13159 ismhm 13165 mhmex 13166 resmhm 13191 isgrp 13210 grppropd 13221 isgrpd2e 13224 grp1 13310 isnsg 13410 nmznsg 13421 isghm 13451 cmnpropd 13503 iscmnd 13506 isrng 13568 rngpropd 13589 dfur2g 13596 issrg 13599 issrgid 13615 isring 13634 iscrng2 13649 ringideu 13651 isringid 13659 ringpropd 13672 ring1 13693 oppr0g 13715 oppr1g 13716 isrhm2d 13799 rhmopp 13810 islring 13826 rrgval 13896 isdomn 13903 opprdomnbg 13908 islmod 13925 islmodd 13927 lmodprop2d 13982 lsssetm 13990 islidlm 14113 rnglidlmmgm 14130 rnglidlmsgrp 14131 mplvalcoe 14324 istopg 14343 restbasg 14512 cnfval 14538 cnpfval 14539 txbas 14602 limccl 15003 sscoll2 15742 |
| Copyright terms: Public domain | W3C validator |